
Amazon Braket PennyLane Plugin
Documentation

Release 1.24.2

Amazon.com Inc.

2024-01-29

CONTENTS

1 Devices 3

2 Tutorials 5
2.1 Installation . 5
2.2 Support . 7
2.3 The remote Braket device . 7
2.4 The local Braket device . 10
2.5 The local AHS device . 11
2.6 The remote AHS device . 13
2.7 pennylane-braket . 15

Python Module Index 185

Index 187

i

ii

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Release
1.24.2

The Amazon Braket Python SDK is an open source library that provides a framework to interact with quantum com-
puting hardware devices and simulators through Amazon Braket.

PennyLane is a machine learning library for optimization and automatic differentiation of hybrid quantum-classical
computations.

Once the Pennylane-Braket plugin is installed, the provided Braket devices can be accessed straight away in PennyLane,
without the need to import any additional packages.

CONTENTS 1

javascript:void(0);
https://github.com/amazon-braket/amazon-braket-sdk-python
https://pennylane.readthedocs.io

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

2 CONTENTS

CHAPTER

ONE

DEVICES

This plugin provides four Braket devices for use with PennyLane - two supporting gate-based computations, and two
supporting analog Hamiltonian simulation (AHS):

While the local device helps with small-scale simulations and rapid prototyping, the remote device allows you to run
larger simulations or access quantum hardware via the Amazon Braket service.

3

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

4 Chapter 1. Devices

CHAPTER

TWO

TUTORIALS

To see the PennyLane-Braket plugin in action, you can use any of the qubit-based demos from the PennyLane documen-
tation, for example the tutorial on qubit rotation, and simply replace 'default.qubit' with the 'braket.local.
qubit' or the 'braket.aws.qubit' device:

dev = qml.device('braket.XXX.qubit', [...])

Tutorials that showcase the Braket devices can be found on the PennyLane website and the Amazon Braket examples
GitHub repository.

2.1 Installation

Before you begin working with the Amazon Braket PennyLane Plugin, make sure that you installed or configured the
following prerequisites:

• Download and install Python 3.9 or greater. If you are using Windows, choose the option Add Python to envi-
ronment variables before you begin the installation.

• Make sure that your AWS account is onboarded to Amazon Braket, as per the instructions here.

• Download and install PennyLane:

pip install pennylane

You can then install the latest release of the PennyLane-Braket plugin as follows:

pip install amazon-braket-pennylane-plugin

You can also install the development version from source by cloning this repository and running a pip install command
in the root directory of the repository:

git clone https://github.com/amazon-braket/amazon-braket-pennylane-plugin-python.git
cd amazon-braket-pennylane-plugin-python
pip install .

You can check your currently installed version of amazon-braket-pennylane-plugin with pip show:

pip show amazon-braket-pennylane-plugin

or alternatively from within Python:

from braket import pennylane_plugin
pennylane_plugin.__version__

5

https://pennylane.ai/qml/demonstrations.html
https://pennylane.ai/qml/demonstrations.html
https://pennylane.ai/qml/demos/tutorial_qubit_rotation.html
https://pennylane.ai/qml/demonstrations.html
https://github.com/amazon-braket/amazon-braket-examples
https://www.python.org/downloads/
https://github.com/amazon-braket/amazon-braket-sdk-python#prerequisites
https://pennylane.ai/install.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

2.1.1 Tests

Make sure to install test dependencies first:

pip install -e "amazon-braket-pennylane-plugin-python[test]"

Unit tests

Run the unit tests using:

tox -e unit-tests

To run an individual test:

tox -e unit-tests -- -k 'your_test'

To run linters and unit tests:

tox

Integration tests

To run the integration tests, set the AWS_PROFILE as explained in the amazon-braket-sdk-python README:

export AWS_PROFILE=Your_Profile_Name

Running the integration tests creates an S3 bucket in the same account as the AWS_PROFILE with the following naming
convention amazon-braket-pennylane-plugin-integ-tests-{account_id}.

Run the integration tests with:

tox -e integ-tests

To run an individual integration test:

tox -e integ-tests -- -k 'your_test'

2.1.2 Documentation

To build the HTML documentation, run:

tox -e docs

The documentation can then be found in the doc/build/documentation/html/ directory.

6 Chapter 2. Tutorials

https://github.com/amazon-braket/amazon-braket-sdk-python/blob/main/README.md

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

2.2 Support

• Source Code: https://github.com/amazon-braket/amazon-braket-pennylane-plugin-python

• Issue Tracker: https://github.com/amazon-braket/amazon-braket-pennylane-plugin-python/issues

• General Questions: https://quantumcomputing.stackexchange.com/questions/ask (add the tag amazon-braket)

• PennyLane Forum: https://discuss.pennylane.ai

If you are having issues, please let us know by posting the issue on our Github issue tracker, or by asking a question in
the forum.

2.3 The remote Braket device

The remote qubit device of the PennyLane-Braket plugin runs gate-based quantum computations on Amazon Braket’s
remote service. The remote service provides access to hardware providers and a high-performance simulator backend.

A list of available quantum devices and their features can be found in the Amazon Braket Developer Guide.

2.3.1 Usage

After the Braket SDK and the plugin are installed, and once you sign up for Amazon Braket, you have access to the
remote Braket device in PennyLane.

Instantiate an AWS device that communicates with the Braket service like this:

>>> import pennylane as qml
>>> s3 = ("my-bucket", "my-prefix")
>>> remote_device = qml.device("braket.aws.qubit", device_arn="arn:aws:braket:::device/
→˓quantum-simulator/amazon/sv1", s3_destination_folder=s3, wires=2)

In this example, the string arn:aws:braket:::device/quantum-simulator/amazon/sv1 is the ARN that iden-
tifies the SV1 device. Other supported devices and their ARNs can be found in the Amazon Braket Developer Guide.
Note that the plugin works with digital (qubit) gate-based devices only.

This device can then be used just like other devices for the definition and evaluation of QNodes within PennyLane.

For example:

@qml.qnode(remote_device)
def circuit(x, y, z):

qml.RZ(z, wires=[0])
qml.RY(y, wires=[0])
qml.RX(x, wires=[0])
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0)), var(qml.PauliZ(1))

When executed, the circuit performs the computation on the Amazon Braket service.

>>> circuit(0.2, 0.1, 0.3)
array([0.97517033, 0.04904283])

2.2. Support 7

https://github.com/amazon-braket/amazon-braket-pennylane-plugin-python
https://github.com/amazon-braket/amazon-braket-pennylane-plugin-python/issues
https://quantumcomputing.stackexchange.com/questions/ask
https://discuss.pennylane.ai
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-enable-overview.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

2.3.2 Enabling the parallel execution of multiple circuits

Where supported by the backend of the Amazon Braket service, the remote device can be used to execute multiple
quantum circuits in parallel. To unlock this feature, instantiate the device using the parallel=True argument:

>>> remote_device = qml.device('braket.aws.qubit', [... ,] parallel=True)

The details of the parallelization scheme depend on the PennyLane version you use, as well as your AWS account
specifications.

For example, PennyLane 0.13.0 and higher supports the parallel execution of circuits created during the computation
of gradients. Just by instantiating the remote device with the parallel=True option, this feature is automatically used
and can lead to significant speedups of your optimization pipeline.

The maximum number of circuits that can be executed in parallel is specified by the max_parallel argument.

>>> remote_device = qml.device('braket.aws.qubit', [... ,] parallel=True, max_
→˓parallel=20)

Make sure that this number is not larger than the maximum number of concurrent tasks allowed for your account on
the backend you choose. See the Braket developer guide for more details.

The Braket remote device has the capability to retry failed circuit executions, up to 3 times per circuit by default. You
can set a timeout by using the poll_timeout_seconds argument; the device will retry circuits that do not complete
within the timeout. A timeout of 30 to 60 seconds is recommended for circuits with fewer than 25 qubits.

2.3.3 Device options

The default value of the shots argument is Shots.DEFAULT, resulting in the default number of shots specified by the
remote device being used. For example, a simulator device may default to analytic mode while a QPU must pick a
finite number of shots.

Setting shots=0 or shots=None will cause the device to run in analytic mode. If the device ARN points to a QPU,
analytic mode is not available and an error will be raised.

2.3.4 Supported operations

The operations supported by this device vary based on the operations supported by the underlying Braket device. To
check the device’s supported operations, run

dev.operations

In addition to those provided by PennyLane, the PennyLane-Braket plugin provides the following framework-specific
operations, which can be imported from braket.pennylane_plugin.ops:

8 Chapter 2. Tutorials

https://docs.aws.amazon.com/braket/latest/developerguide/braket-quotas.html
https://pennylane.readthedocs.io/en/stable/introduction/operations.html#qubit-operations

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

braket.pennylane_plugin.CPhaseShift00(phi,
wires)

Controlled phase shift gate phasing the |00⟩ state.

braket.pennylane_plugin.CPhaseShift01(phi,
wires)

Controlled phase shift gate phasing the |01⟩ state.

braket.pennylane_plugin.CPhaseShift10(phi,
wires)

Controlled phase shift gate phasing the |10⟩ state.

braket.pennylane_plugin.PSWAP(phi, wires) Phase-SWAP gate.
braket.pennylane_plugin.GPi(phi, wires) IonQ native GPi gate.
braket.pennylane_plugin.GPi2(phi, wires) IonQ native GPi2 gate.
braket.pennylane_plugin.MS(phi_0, phi_1, wires) IonQ native Mølmer-Sørenson gate.

2.3.5 Pulse Programming

The PennyLane-Braket plugin provides pulse-level control for the OQC Lucy QPU through PennyLane’s
ParametrizedEvolution operation. Compatible pulse Hamiltonians can be defined using the qml.pulse.transmon_drive
function and used to create ParametrizedEvolution’s using qml.evolve:

duration = 15
def amp(p, t):

return qml.pulse.pwc(duration)(p, t)

dev = qml.device("braket.aws.qubit", wires=8, device_arn="arn:aws:braket:eu-west-
→˓2::device/qpu/oqc/Lucy")

drive = qml.pulse.transmon.transmon_drive(amplitude=amp, phase=0, freq=4.8, wires=[0])

@qml.qnode(dev)
def circuit(params, t):

qml.evolve(drive)(params, t)
return qml.expval(qml.PauliZ(wires=0))

Note that the freq argument of qml.pulse.transmon_drive is specified in GHz, and for hardware upload the
amplitude will be interpreted as an output power for control hardware in volts. The phase must be specified in radians.

The pulse settings for the device can be obtained using the pulse_settings property. These settings can be used to
describe the transmon interaction Hamiltonian using qml.pulse.transmon_interaction:

dev = qml.device("braket.aws.qubit", wires=8, device_arn="arn:aws:braket:eu-
→˓west-2::device/qpu/oqc/Lucy")
pulse_settings = dev.pulse_settings
couplings = [0.01]*len(connections)
H = qml.pulse.transmon_interaction(**pulse_settings, coupling=couplings)

By passing pulse_settings from the remote device to qml.pulse.transmon_interaction, an H Hamiltonian
term is created using the constants specific to the hardware. This is relevant for simulating the hardware in PennyLane
on the default.qubit device.

Note that the user must supply coupling coefficients, as these are not available from the hardware backend. On the
order of 10 MHz (0.01 GHz) is in a realistic range.

2.3. The remote Braket device 9

https://docs.pennylane.ai/en/latest/code/api/pennylane.pulse.ParametrizedEvolution.html
https://docs.pennylane.ai/en/latest/code/api/pennylane.pulse.transmon_drive.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.evolve.html
https://docs.pennylane.ai/en/latest/code/api/pennylane.pulse.transmon_interaction.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

2.3.6 Gradient computation on Braket with a QAOA Hamiltonian

Currently, PennyLane will compute grouping indices for QAOA Hamiltonians and use them to split the Hamiltonian
into multiple expectation values. If you wish to use SV1’s adjoint differentiation capability when running QAOA from
PennyLane, you will need reconstruct the cost Hamiltonian to remove the grouping indices from the cost Hamiltonian,
like so:

cost_h, mixer_h = qml.qaoa.max_clique(g, constrained=False)
cost_h = qml.Hamiltonian(cost_h.coeffs, cost_h.ops)

2.4 The local Braket device

The local qubit device of the PennyLane-Braket plugin runs gate-based quantum computations on the local Braket
SDK. This could be either utilizing the processors of your own PC, or those of a Braket notebook instance hosted on
AWS.

This device is useful for small-scale simulations in which the time of sending a job to a remote service would add an
unnecessary overhead. It can also be used for rapid prototyping before running a computation on a paid-for remote
service.

2.4.1 Usage

After the Braket SDK and the plugin are installed you immediately have access to the local Braket device in PennyLane.

To instantiate the local Braket simulator, simply use:

import pennylane as qml
device_local = qml.device("braket.local.qubit", wires=2) # local state vector simulator
device_local = qml.device("braket.local.qubit", backend="default", wires=2) # local␣
→˓state vector simulator
device_local = qml.device("braket.local.qubit", backend="braket_sv", wires=2) # local␣
→˓state vector simulator
device_local = qml.device("braket.local.qubit", backend="braket_dm", wires=2) # local␣
→˓state vector simulator

You can define and evaluate quantum nodes with these devices just as you would with any other PennyLane device.

For example:

@qml.qnode(device_local)
def circuit(x, y, z):

qml.RZ(z, wires=[0])
qml.RY(y, wires=[0])
qml.RX(x, wires=[0])
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0)), var(qml.PauliZ(1))

When executed, the circuit will perform the computation on the local machine.

>>> circuit(0.2, 0.1, 0.3)
array([0.97517033, 0.04904283])

10 Chapter 2. Tutorials

https://docs.aws.amazon.com/braket/latest/developerguide/hybrid.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

2.4.2 Device options

You can set shots to None (default) to get exact results instead of results calculated from samples.

2.4.3 Supported operations

The operations supported by this device vary based on the operations supported by the underlying Braket device. To
check the device’s supported operations, run

dev.operations

In addition to those provided by PennyLane, the PennyLane-Braket plugin provides the following framework-specific
operations, which can be imported from braket.pennylane_plugin.ops:

braket.pennylane_plugin.CPhaseShift00(phi,
wires)

Controlled phase shift gate phasing the |00⟩ state.

braket.pennylane_plugin.CPhaseShift01(phi,
wires)

Controlled phase shift gate phasing the |01⟩ state.

braket.pennylane_plugin.CPhaseShift10(phi,
wires)

Controlled phase shift gate phasing the |10⟩ state.

braket.pennylane_plugin.PSWAP(phi, wires) Phase-SWAP gate.
braket.pennylane_plugin.GPi(phi, wires) IonQ native GPi gate.
braket.pennylane_plugin.GPi2(phi, wires) IonQ native GPi2 gate.
braket.pennylane_plugin.MS(phi_0, phi_1, wires) IonQ native Mølmer-Sørenson gate.

2.5 The local AHS device

The local analog Hamiltonian simulation (AHS) device of the PennyLane-Braket plugin runs simulation on the local
Braket SDK. This could be either utilizing the processors of your own PC, or those of a Braket notebook instance hosted
on AWS.

This device is useful for small-scale simulations in which the time of sending a job to a remote service would add an
unnecessary overhead. It can also be used for rapid prototyping before running a computation on a paid-for remote
service.

2.5.1 Usage

After the Braket SDK and the plugin are installed you immediately have access to the local Braket AHS simulator in
PennyLane.

The local AHS device is not gate-based. Instead, it is compatible with the ParametrizedEvolution operator from pulse
programming in PennyLane.

Note that pulse programming in PennyLane requires the module jax, which can be installed following the instructions
[here](https://github.com/google/jax#installation).

To instantiate the local Braket simulator, simply use:

import pennylane as qml
device_local = qml.device("braket.local.ahs", wires=2)

2.5. The local AHS device 11

https://pennylane.readthedocs.io/en/stable/introduction/operations.html#qubit-operations
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-create-notebook.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-simulator-ahs-local
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedEvolution.html
https://docs.pennylane.ai/en/stable/code/qml_pulse.html
https://docs.pennylane.ai/en/stable/code/qml_pulse.html
https://github.com/google/jax#installation

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

This device can be used with a QNode within PennyLane. It accepts circuits with a single ParametrizedEvolution op-
erator based on a ParametrizedHamiltonian compatible with the simulated hardware. More information about creating
PennyLane operators for AHS can be found in the PennyLane docs.

Note: It is important to keep track of units when specifying electromagnetic pulses for hardware control. The fre-
quency and amplitude provided in PennyLane for Rydberg atom systems are expected to be in units of MHz, time in
microseconds, phase in radians, and distance in micrometers. All of these will be converted to SI units internally as
needed for upload to the hardware, and frequency will be converted to angular frequency (multiplied by 2𝜋).

When reading hardware specifications from the Braket backend, bear in mind that all units are SI and frequencies are in
rad/s. This conversion is done when creating a pulse program for upload, and units in the PennyLane functions should
follow the conventions specified in the PennyLane docs to ensure correct unit conversion. See rydberg_interaction and
rydberg_drive in Pennylane for specification of expected input units, and examples for creating hardware-compatible
ParametrizedEvolution operators in PennyLane.

Creating a register

The atom register defines where the atoms will be located, which determines the strength of the interaction between
the atoms. Here we define coordinates for the atoms to be placed at (in micrometers), and create a constant interaction
term for the Hamiltonian:

number of coordinate pairs must match number of device wires
coordinates = [[0, 0], [0, 5]]

H_interaction = qml.pulse.rydberg_interaction(coordinates)

Creating a drive

We can create a drive with a global component and (positive) local detunings. If the local detunings are time-dependent,
they must all have the same time-dependent envelope, but can have different, positive scaling factors.

from jax import numpy as jnp

gaussian amplitude function (qml.pulse.rect enforces 0 at start and end for hardware)
def amp_fn(p, t):

f = p[0] * jnp.exp(-(t - p[1])**2 / (2 * p[2]**2))
return qml.pulse.rect(f, windows=[0.1, 1.7])(p, t)

defining a linear detuning
def det_fn_global(p, t):

return p * t

def det_fn_local(p, t):
return p * t**2

creating a global drive on all wires
H_global = qml.pulse.rydberg_drive(amplitude=amp_fn, phase=0, detuning=det_fn_global,␣
→˓wires=[0, 1])

creating local drives
note only local detuning is currently supported, so amplitude and phase are set to 0

(continues on next page)

12 Chapter 2. Tutorials

https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedEvolution.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedHamiltonian.html
https://docs.pennylane.ai/en/stable/code/qml_pulse.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.rydberg_interaction.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.rydberg_drive.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedEvolution.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(continued from previous page)

H_local0 = qml.pulse.rydberg_drive(amplitude=0, phase=0, detuning = det_fn_local,␣
→˓wires=[0])
H_local1 = qml.pulse.rydberg_drive(amplitude=0, phase=0, detuning = det_fn_local,␣
→˓wires=[1])

full hamiltonian
H = H_interaction + H_global + H_local0 + H_local1

Executing an AHS program

@qml.qnode(device_local)
def circuit(params):

qml.evolve(H)(params, t=1.5)
return qml.sample()

amp_fn expects p to contain 3 parameters
amp_params = [2.5, 1, 0.3]
global_det_fn expects p to be a single parameter
det_global_params = 0.2
each of the local drives take a single parameter for p
the detunings have the same shape, but vary by scaling factor p
local_params1 = 0.5
local_params2 = 1

When executed, the circuit will perform the computation on the local machine.

>>> circuit([amp_params, det_global_params, local_params1, local_params2])
array([[0, 0],

[0, 0],
[0, 0],
...,
[1, 0],
[1, 0],
[1, 0]])

2.6 The remote AHS device

The remote AHS device of the PennyLane-Braket plugin runs analog Hamiltonian simulation (AHS) on Amazon
Braket’s remote service. AHS is a quantum computing paradigm different from gate-based computing. AHS uses
a well-controlled quantum system and tunes its parameters to mimic the dynamics of another quantum system, the one
we aim to study.

The remote service provides access to running AHS on hardware. As AHS devices are not gate-based, they are not
compatible with the standard PennyLane operators. Instead, they are compatible with pulse programming in Penny-
Lane.

Note that pulse programming in PennyLane requires the module jax, which can be installed following the instructions
[here](https://github.com/google/jax#installation).

More information about AHS and the capabilities of the hardware can be found in the Amazon Braket Developer Guide.

2.6. The remote AHS device 13

https://docs.pennylane.ai/en/stable/code/qml_pulse.html
https://github.com/google/jax#installation
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-qpu-partner-quera

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

2.6.1 Usage

After the Braket SDK and the plugin are installed, and once you sign up for Amazon Braket, you have access to the
remote AHS device in PennyLane.

Instantiate an AWS device that communicates with the hardware like this:

>>> import pennylane as qml
>>> device_arn = "arn:aws:braket:us-east-1::device/qpu/quera/Aquila"
>>> remote_device = qml.device("braket.aws.ahs", device_arn=device_arn, wires=3)

This device can be used with a QNode within PennyLane. It accepts circuits with a single ParametrizedEvolution oper-
ator based on a hardware-compatible ParametrizedHamiltonian. More information about creating PennyLane operators
for AHS can be found in the PennyLane docs.

Note: It is important to keep track of units when specifying electromagnetic pulses for hardware control. The fre-
quency and amplitude provided in PennyLane for Rydberg atom systems are expected to be in units of MHz, time in
microseconds, phase in radians, and distance in micrometers. All of these will be converted to SI units internally as
needed for upload to the hardware, and frequency will be converted to angular frequency (multiplied by 2𝜋).

When reading hardware specifications from the Braket backend, bear in mind that all units are SI and frequencies are in
rad/s. This conversion is done when creating a pulse program for upload, and units in the PennyLane functions should
follow the conventions specified in the PennyLane docs to ensure correct unit conversion. See rydberg_interaction and
rydberg_drive in Pennylane for specification of expected input units, and examples for creating hardware-compatible
ParametrizedEvolution operators in PennyLane.

Creating a register

The atom register defines where the atoms will be located, and determines the strength of the interaction between the
atoms. Here we define coordinates for the atoms to be placed at (in micrometers), and create a constant interaction
term for the Hamiltonian:

number of coordinate pairs must match number of device wires
coordinates = [[0, 0], [0, 5], [5, 0]]

H_interaction = qml.pulse.rydberg_interaction(coordinates)

Creating a global drive

Hardware currently only supports a single global drive pulse applied to all atoms in the register.

Here we define a global drive with time dependent amplitude and detuning, with phase set to 0.

from jax import numpy as jnp

gaussian amplitude function (qml.pulse.rect enforces 0 at start and end for hardware)
def amp_fn(p, t):

f = p[0] * jnp.exp(-(t - p[1])**2 / (2 * p[2]**2))
return qml.pulse.rect(f, windows=[0.1, 1.7])(p, t)

defining a linear detuning
(continues on next page)

14 Chapter 2. Tutorials

https://docs.aws.amazon.com/braket/latest/developerguide/braket-enable-overview.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedEvolution.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedHamiltonian.html
https://docs.pennylane.ai/en/stable/code/qml_pulse.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.rydberg_interaction.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.rydberg_drive.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedEvolution.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(continued from previous page)

def det_fn(p, t):
return p * t

creating a global drive on all wires
H_global = qml.pulse.rydberg_drive(amplitude=amp_fn, phase=0, detuning=det_fn, wires=[0,␣
→˓1, 2])

Creating and executing the circuit

Once we have the terms describing the atomic interactions and the electromagnetic drive on the atoms, we can create
and execute a circuit to run the pulse program on the hardware:

@qml.qnode(remote_device)
def circuit(amp_params, det_params):

qml.evolve(H_interaction + H_global)([amp_params, det_params], t=1.75)
return qml.sample()

When executed, the circuit performs the computation on the hardware.

>>> amp_params = [2.5, 1, 0.3] # amp_fn expects p to contain 3 parameters
>>> det_params = 0.2 # det_fn expects p to be a single parameter
>>> circuit(amp_params, det_params)
array([0.97517033, 0.04904283])

2.6.2 Device options

The default value of the shots argument is Shots.DEFAULT, resulting in the default number of shots specified by the
remote device being used. For example, a simulator device may default to analytic mode while a QPU must pick a
finite number of shots.

This device is not compatible with analytic mode, so an error will be raised if shots=0 or shots=None.

2.6.3 Supported operations

The only operation supported for analog Hamiltonian simulation is a ParametrizedEvolution describing a hardware-
compatible electromagnetic pulse.

2.7 pennylane-braket

This section contains the API documentation for the PennyLane-Braket plugin.

Warning: Unless you are a PennyLane plugin developer, you likely do not need to use these classes and functions
directly.

See the overview page for more details using the available Braket devices with PennyLane.

2.7. pennylane-braket 15

https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedEvolution.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

2.7.1 Classes

AAMS(phi_0, phi_1, theta, wires) IonQ native Arbitrary-Angle Mølmer-Sørenson gate.
BraketAwsAhsDevice(wires, device_arn[, ...]) Amazon Braket AHS device for hardware in PennyLane.
BraketAwsQubitDevice(wires, device_arn[, ...]) Amazon Braket AwsDevice qubit device for PennyLane.
BraketLocalAhsDevice(wires, *[, shots]) Amazon Braket LocalSimulator AHS device for Penny-

Lane.
BraketLocalQubitDevice(wires[, backend, shots]) Amazon Braket LocalSimulator qubit device for Penny-

Lane.
CPhaseShift00(phi, wires) Controlled phase shift gate phasing the |00⟩ state.
CPhaseShift01(phi, wires) Controlled phase shift gate phasing the |01⟩ state.
CPhaseShift10(phi, wires) Controlled phase shift gate phasing the |10⟩ state.
GPi(phi, wires) IonQ native GPi gate.
GPi2(phi, wires) IonQ native GPi2 gate.
MS(phi_0, phi_1, wires) IonQ native Mølmer-Sørenson gate.
PSWAP(phi, wires) Phase-SWAP gate.

AAMS

class AAMS(phi_0, phi_1, theta, wires)
Bases: Operation

IonQ native Arbitrary-Angle Mølmer-Sørenson gate.

MS(𝜑0, 𝜑1, 𝜃) =

⎡⎢⎢⎣
cos 𝜃

2 0 0 −𝑖𝑒−𝑖(𝜑0+𝜑1) sin 𝜃
2

0 cos 𝜃
2 −𝑖𝑒−𝑖(𝜑0−𝜑1) sin 𝜃

2 0
0 −𝑖𝑒𝑖(𝜑0−𝜑1) sin 𝜃

2 cos 𝜃
2 0

−𝑖𝑒𝑖(𝜑0+𝜑1) sin 𝜃
2 0 0 cos 𝜃

2

⎤⎥⎥⎦ .
Details:

• Number of wires: 2

• Number of parameters: 2

Parameters

• phi_0 (float) – the first phase angle

• phi_1 (float) – the second phase angle

• theta (float) – the entangling angle

• wires (int) – the subsystem the gate acts on

• id (str or None) – String representing the operation (optional)

16 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

arithmetic_depth Arithmetic depth of the operator.
basis The basis of an operation, or for controlled gates, of

the target operation.
batch_size Batch size of the operator if it is used with broad-

casted parameters.
control_wires Control wires of the operator.
grad_method

grad_recipe Gradient recipe for the parameter-shift method.
has_adjoint

has_decomposition

has_diagonalizing_gates

has_generator

has_matrix

hash Integer hash that uniquely represents the operator.
hyperparameters Dictionary of non-trainable variables that this opera-

tion depends on.
id Custom string to label a specific operator instance.
is_hermitian This property determines if an operator is hermitian.
name String for the name of the operator.
ndim_params Number of dimensions per trainable parameter of the

operator.
num_params

num_wires Number of wires the operator acts on.
parameter_frequencies Returns the frequencies for each operator parame-

ter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

parameters Trainable parameters that the operator depends on.
pauli_rep A PauliSentence representation of the Operator, or

None if it doesn't have one.
wires Wires that the operator acts on.

arithmetic_depth

Arithmetic depth of the operator.

basis

The basis of an operation, or for controlled gates, of the target operation. If not None, should take a value
of "X", "Y", or "Z".

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis =
"Z".

Type
str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

2.7. pennylane-braket 17

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

The batch_size is determined based on ndim_params and the provided parameters for the operator. If
(some of) the latter have an additional dimension, and this dimension has the same size for all parameters,
its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns
Size of the parameter broadcasting dimension if present, else None.

Return type
int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns
The control wires of the operation.

Return type
Wires

grad_method = 'F'

grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter 𝜑𝑘, the nested list contains
elements of the form [𝑐𝑖, 𝑎𝑖, 𝑠𝑖] where 𝑖 is the index of the term, resulting in a gradient recipe of

𝜕

𝜕𝜑𝑘
𝑓 =

∑︁
𝑖

𝑐𝑖𝑓(𝑎𝑖𝜑𝑘 + 𝑠𝑖).

If None, the default gradient recipe containing the two terms [𝑐0, 𝑎0, 𝑠0] = [1/2, 1, 𝜋/2] and [𝑐1, 𝑎1, 𝑠1] =
[−1/2, 1,−𝜋/2] is assumed for every parameter.

Type
tuple(Union(list[list[float]], None)) or None

has_adjoint = True

has_decomposition = False

has_diagonalizing_gates = False

has_generator = False

has_matrix = True

hash

Integer hash that uniquely represents the operator.

Type
int

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type
dict

18 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

id

Custom string to label a specific operator instance.

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation.
If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed
value.

Returns
Number of dimensions for each trainable parameter.

Return type
tuple

num_params = 3

num_wires = 2

Number of wires the operator acts on.

parameter_frequencies

Returns the frequencies for each operator parameter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

These frequencies encode the behaviour of the operator 𝑈(p) on the value of the expectation value as the
parameters are modified. For more details, please see the pennylane.fourier module.

Returns
Tuple of frequencies for each parameter. Note that only non-negative frequency values are
returned.

Return type
list[tuple[int or float]]

Example

>>> op = qml.CRot(0.4, 0.1, 0.3, wires=[0, 1])
>>> op.parameter_frequencies
[(0.5, 1), (0.5, 1), (0.5, 1)]

For operators that define a generator, the parameter frequencies are directly related to the eigenvalues of
the generator:

>>> op = qml.ControlledPhaseShift(0.1, wires=[0, 1])
>>> op.parameter_frequencies
[(1,)]
>>> gen = qml.generator(op, format="observable")
>>> gen_eigvals = qml.eigvals(gen)
>>> qml.gradients.eigvals_to_frequencies(tuple(gen_eigvals))
(1.0,)

For more details on this relationship, see eigvals_to_frequencies().

2.7. pennylane-braket 19

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

wires

Wires that the operator acts on.

Returns
wires

Return type
Wires

adjoint() Create an operation that is the adjoint of this one.
compute_decomposition(*params[, wires]) Representation of the operator as a product of other

operators (static method).
compute_diagonalizing_gates(*params, wires,
...)

Sequence of gates that diagonalize the operator in the
computational basis (static method).

compute_eigvals(*params, **hyperparams) Eigenvalues of the operator in the computational ba-
sis (static method).

compute_matrix(phi_0, phi_1, theta) Representation of the operator as a canonical matrix
in the computational basis (static method).

compute_sparse_matrix(*params, **hyper-
params)

Representation of the operator as a sparse matrix in
the computational basis (static method).

decomposition() Representation of the operator as a product of other
operators.

diagonalizing_gates() Sequence of gates that diagonalize the operator in the
computational basis.

eigvals() Eigenvalues of the operator in the computational ba-
sis.

expand() Returns a tape that contains the decomposition of the
operator.

generator() Generator of an operator that is in single-parameter-
form.

label([decimals, base_label, cache]) A customizable string representation of the operator.
map_wires(wire_map) Returns a copy of the current operator with its wires

changed according to the given wire map.
matrix([wire_order]) Representation of the operator as a matrix in the com-

putational basis.
pow(z) A list of new operators equal to this one raised to the

given power.
queue([context]) Append the operator to the Operator queue.
simplify() Reduce the depth of nested operators to the minimum.
single_qubit_rot_angles() The parameters required to implement a single-qubit

gate as an equivalent Rot gate, up to a global phase.
sparse_matrix([wire_order]) Representation of the operator as a sparse matrix in

the computational basis.
terms() Representation of the operator as a linear combina-

tion of other operators.
validate_subspace(subspace) Validate the subspace for qutrit operations.

adjoint()

20 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops
are equivalent to the inverted operation for unitary gates.

Returns
The adjointed operation.

static compute_decomposition(*params, wires=None, **hyperparameters)
Representation of the operator as a product of other operators (static method).

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛.

Note: Operations making up the decomposition should be queued within the compute_decomposition
method.

See also:

decomposition().

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
decomposition of the operator

Return type
list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)
Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

See also:

diagonalizing_gates().

Parameters

• params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

2.7. pennylane-braket 21

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
list of diagonalizing gates

Return type
list[.Operator]

static compute_eigvals(*params, **hyperparams)
Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

See also:

Operator.eigvals() and qml.eigvals()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
eigenvalues

Return type
tensor_like

static compute_matrix(phi_0, phi_1, theta)
Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

Operator.matrix() and qml.matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
matrix representation

Return type
tensor_like

22 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

static compute_sparse_matrix(*params, **hyperparams)
Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

sparse_matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_decomposition().

Returns
decomposition of the operator

Return type
list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_diagonalizing_gates().

Returns
a list of operators

Return type
list[.Operator] or None

2.7. pennylane-braket 23

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note: When eigenvalues are not explicitly defined, they are computed automatically from the matrix
representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from
the matrix representation.

See also:

compute_eigvals()

Returns
eigenvalues

Return type
tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Returns
quantum tape

Return type
.QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

𝑈(𝜑) = 𝑒𝑖𝜑(0.5𝑌+𝑍⊗𝑋)

we get the generator

>>> U.generator()
(0.5) [Y0]

+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and
SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)
A customizable string representation of the operator.

Parameters

24 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• decimals=None (int) – If None, no parameters are included. Else, specifies how to round
the parameters.

• base_label=None (str) – overwrite the non-parameter component of the label

• cache=None (dict) – dictionary that carries information between label calls in the same
drawing

Returns
label to use in drawings

Return type
str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")
>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be
cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
[0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],

[0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], requires_grad=True)]

map_wires(wire_map: dict)
Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

2.7. pennylane-braket 25

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
new operator

Return type
.Operator

matrix(wire_order=None)
Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation frame-
work as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also:

compute_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
matrix representation

Return type
tensor_like

pow(z)→ List[Operator]
A list of new operators equal to this one raised to the given power.

Parameters
z (float) – exponent for the operator

Returns
list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)
Append the operator to the Operator queue.

simplify()→ Operator
Reduce the depth of nested operators to the minimum.

Returns
simplified operator

Return type
.Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns
A list of values [𝜑, 𝜃, 𝜔] such that𝑅𝑍(𝜔)𝑅𝑌 (𝜃)𝑅𝑍(𝜑) is equivalent to the original operation.

Return type
tuple[float, float, float]

26 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

sparse_matrix(wire_order=None)
Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

See also:

compute_sparse_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

terms()

Representation of the operator as a linear combination of other operators.

𝑂 =
∑︁
𝑖

𝑐𝑖𝑂𝑖

A TermsUndefinedError is raised if no representation by terms is defined.

Returns
list of coefficients 𝑐𝑖 and list of operations 𝑂𝑖

Return type
tuple[list[tensor_like or float], list[.Operation]]

static validate_subspace(subspace)
Validate the subspace for qutrit operations.

This method determines whether a given subspace for qutrit operations is defined correctly or not. If not,
a ValueError is thrown.

Parameters
subspace (tuple[int]) – Subspace to check for correctness

BraketAwsAhsDevice

class BraketAwsAhsDevice(wires: int | Iterable, device_arn: str, s3_destination_folder: S3DestinationFolder |
None = None, *, poll_timeout_seconds: float = 432000, poll_interval_seconds: float
= 1, shots: int | Shots = Shots.DEFAULT , aws_session: AwsSession | None = None)

Bases: BraketAhsDevice

Amazon Braket AHS device for hardware in PennyLane.

More information about AHS and the capabilities of the hardware can be found in the Amazon Braket Developer
Guide.

Parameters

2.7. pennylane-braket 27

https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• wires (int or Iterable[int, str]) – Number of subsystems represented by the de-
vice, or iterable that contains unique labels for the subsystems as numbers (i.e., [-1, 0,
2]) or strings (['ancilla', 'q1', 'q2']).

• device_arn (str) – The ARN identifying the AwsDevice to be used to run circuits; The
corresponding AwsDevice must support analog Hamiltonian simulation. You can get device
ARNs from the Amazon Braket console or from the Amazon Braket Developer Guide.

• s3_destination_folder (AwsSession.S3DestinationFolder) – Name of the S3
bucket and folder, specified as a tuple.

• poll_timeout_seconds (float) – Total time in seconds to wait for results before timing
out.

• poll_interval_seconds (float) – The polling interval for results in seconds.

• shots (int or Shots.DEFAULT) – Number of executions to run to aquire measurements.
Default: Shots.DEFAULT

• aws_session (Optional[AwsSession]) – An AwsSession object created to manage in-
teractions with AWS services, to be supplied if extra control is desired. Default: None

Note: It is important to keep track of units when specifying electromagnetic pulses for hardware control. The
frequency and amplitude provided in PennyLane for Rydberg atom systems are expected to be in units of MHz,
time in microseconds, phase in radians, and distance in micrometers. All of these will be converted to SI units
internally as needed for upload to the hardware, and frequency will be converted to angular frequency (multiplied
by 2𝜋).

When reading hardware specifications from the Braket backend, bear in mind that all units are SI and frequencies
are in rad/s. This conversion is done when creating a pulse program for upload, and units in the PennyLane
functions should follow the conventions specified in the PennyLane docs to ensure correct unit conversion. See
rydberg_interaction and rydberg_drive in Pennylane for specification of expected input units, and examples for
creating hardware compatible ParametrizedEvolution operators in PennyLane.

28 Chapter 2. Tutorials

https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.rydberg_interaction.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.rydberg_drive.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedEvolution.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

ahs_program

analytic Whether shots is None or not.
author

circuit_hash The hash of the circuit upon the last execution.
hardware_capabilities Dictionary of hardware capabilities for the hardware

device
measurement_map Mapping used to override the logic of measurement

processes.
name

num_executions Number of times this device is executed by the eval-
uation of QNodes running on this device

obs_queue The observables to be measured and returned.
observables

op_queue The operation queue to be applied.
operations

parameters Mapping from free parameter index to the list of
Operations in the device queue that depend on it.

pennylane_requires

register Register a virtual subclass of an ABC.
result

settings Dictionary of constants set by the hardware.
short_name

shot_vector Returns the shot vector, a sparse representation of the
shot sequence used by the device when evaluating
QNodes.

shots Number of circuit evaluations/random samples used
to estimate expectation values of observables

state Returns the state vector of the circuit prior to mea-
surement.

stopping_condition Returns the stopping condition for the device.
task

version

wire_map Ordered dictionary that defines the map from user-
provided wire labels to the wire labels used on this
device

wires All wires that can be addressed on this device

ahs_program

analytic

Whether shots is None or not. Kept for backwards compatability.

author = 'Xanadu Inc.'

2.7. pennylane-braket 29

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

circuit_hash

The hash of the circuit upon the last execution.

This can be used by devices in apply() for parametric compilation.

hardware_capabilities

Dictionary of hardware capabilities for the hardware device

measurement_map = {}

Mapping used to override the logic of measurement processes. The dictionary maps a measurement class
to a string containing the name of a device’s method that overrides the measurement process. The method
defined by the device should have the following arguments:

• measurement (MeasurementProcess): measurement to override

• shot_range (tuple[int]): 2-tuple of integers specifying the range of samples
to use. If not specified, all samples are used.

• bin_size (int): Divides the shot range into bins of size bin_size, and
returns the measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

Note: When overriding the logic of a MeasurementTransform, the method defined by the device should
only have a single argument:

• tape: quantum tape to transform

Example:

Let’s create a device that inherits from DefaultQubitLegacy and overrides the logic of the qml.sample
measurement. To do so we will need to update the measurement_map dictionary:

class NewDevice(DefaultQubitLegacy):
def __init__(self, wires, shots):

super().__init__(wires=wires, shots=shots)
self.measurement_map[SampleMP] = "sample_measurement"

def sample_measurement(self, measurement, shot_range=None, bin_size=None):
return 2

>>> dev = NewDevice(wires=2, shots=1000)
>>> @qml.qnode(dev)
... def circuit():
... return qml.sample()
>>> circuit()
tensor(2, requires_grad=True)

name = 'Braket Device for AHS in PennyLane'

num_executions

Number of times this device is executed by the evaluation of QNodes running on this device

Returns
number of executions

Return type
int

30 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

obs_queue

The observables to be measured and returned.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
list[~.operation.Observable]

observables = {'Hadamard', 'Hermitian', 'Identity', 'PauliX', 'PauliY', 'PauliZ',
'Prod', 'Projector', 'Sprod', 'Sum'}

op_queue

The operation queue to be applied.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
list[~.operation.Operation]

operations = {'ParametrizedEvolution'}

parameters

Mapping from free parameter index to the list of Operations in the device queue that depend on it.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
the mapping

Return type
dict[int->list[ParameterDependency]]

pennylane_requires = '>=0.30.0'

register

result

settings

Dictionary of constants set by the hardware.

Used to enable initializing hardware-consistent Hamiltonians by saving all the values that would need to
be passed, i.e.:

>>> dev_remote = qml.device('braket.aws.ahs', wires=3)
>>> dev_pl = qml.device('default.qubit', wires=3)
>>> settings = dev_remote.settings
>>> H_int = qml.pulse.rydberg.rydberg_interaction(coordinates, **settings)

By passing the settings from the remote device to rydberg_interaction, an H_int Hamiltonian term
is created using the constants specific to the hardware. This is relevant for simulating the hardware in
PennyLane on the default.qubit device.

2.7. pennylane-braket 31

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

short_name = 'braket.aws.ahs'

shot_vector

Returns the shot vector, a sparse representation of the shot sequence used by the device when evaluating
QNodes.

Example

>>> dev = qml.device("default.qubit.legacy", wires=2, shots=[3, 1, 2, 2, 2, 2,␣
→˓6, 1, 1, 5, 12, 10, 10])
>>> dev.shots
57
>>> dev.shot_vector
[ShotCopies(3 shots x 1),
ShotCopies(1 shots x 1),
ShotCopies(2 shots x 4),
ShotCopies(6 shots x 1),
ShotCopies(1 shots x 2),
ShotCopies(5 shots x 1),
ShotCopies(12 shots x 1),
ShotCopies(10 shots x 2)]

The sparse representation of the shot sequence is returned, where tuples indicate the number of times a shot
integer is repeated.

Type
list[ShotCopies]

shots

Number of circuit evaluations/random samples used to estimate expectation values of observables

state

Returns the state vector of the circuit prior to measurement.

Note: Only state vector simulators support this property. Please see the plugin documentation for more
details.

stopping_condition

Returns the stopping condition for the device. The returned function accepts a queuable object (including
a PennyLane operation and observable) and returns True if supported by the device.

Type
.BooleanFn

task

version = '0.34.0'

wire_map

Ordered dictionary that defines the map from user-provided wire labels to the wire labels used on this device

wires

All wires that can be addressed on this device

32 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

access_state([wires]) Check that the device has access to an internal state
and return it if available.

active_wires(operators) Returns the wires acted on by a set of operators.
adjoint_jacobian(tape[, starting_state, ...]) Implements the adjoint method outlined in Jones and

Gacon to differentiate an input tape.
analytic_probability([wires]) Return the (marginal) probability of each computa-

tional basis state from the last run of the device.
apply(operations, **kwargs) Convert the pulse operation to an AHS program and

run on the connected device
batch_execute(circuits) Execute a batch of quantum circuits on the device.
batch_transform(circuit) Apply a differentiable batch transform for preprocess-

ing a circuit prior to execution.
capabilities() Get the capabilities of this device class.
check_validity(queue, observables) Checks whether the operations and observables in

queue are all supported by the device.
classical_shadow(obs, circuit) Returns the measured bits and recipes in the classical

shadow protocol.
create_ahs_program(evolution) Create AHS program for upload to hardware from a

ParametrizedEvolution
custom_expand(fn) Register a custom expansion function for the device.
default_expand_fn(circuit[, max_expansion]) Method for expanding or decomposing an input cir-

cuit.
define_wire_map(wires) Create the map from user-provided wire labels to the

wire labels used by the device.
density_matrix(wires) Returns the reduced density matrix over the given

wires.
estimate_probability([wires, shot_range, ...]) Return the estimated probability of each computa-

tional basis state using the generated samples.
execute(circuit, **kwargs) It executes a queue of quantum operations on the de-

vice and then measure the given observables.
execute_and_gradients(circuits[, method]) Execute a batch of quantum circuits on the device,

and return both the results and the gradients.
execution_context() The device execution context used during calls to

execute().
expand_fn(circuit[, max_expansion]) Method for expanding or decomposing an input cir-

cuit.
expval(observable[, shot_range, bin_size]) Returns the expectation value of observable on spec-

ified wires.
generate_basis_states(num_wires[, dtype]) Generates basis states in binary representation ac-

cording to the number of wires specified.
generate_samples() Returns the computational basis samples measured

for all wires.
gradients(circuits[, method]) Return the gradients of a batch of quantum circuits on

the device.
map_wires(wires) Map the wire labels of wires using this device's wire

map.
marginal_prob(prob[, wires]) Return the marginal probability of the computational

basis states by summing the probabiliites on the non-
specified wires.

mutual_info(wires0, wires1, log_base) Returns the mutual information prior to measure-
ment:

continues on next page

2.7. pennylane-braket 33

https://arxiv.org/abs/2009.02823
https://arxiv.org/abs/2009.02823

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Table 1 – continued from previous page
order_wires(subset_wires) Given some subset of device wires return a Wires ob-

ject with the same wires; sorted according to the de-
vice wire map.

post_apply() Called during execute() after the individual opera-
tions have been executed.

post_measure() Called during execute() after the individual ob-
servables have been measured.

pre_apply() Called during execute() before the individual oper-
ations are executed.

pre_measure() Called during execute() before the individual ob-
servables are measured.

probability([wires, shot_range, bin_size]) Return either the analytic probability or estimated
probability of each computational basis state.

reset() Reset the backend state.
sample(observable[, shot_range, bin_size, ...]) Return samples of an observable.
sample_basis_states(number_of_states, ...) Sample from the computational basis states based on

the state probability.
shadow_expval(obs, circuit) Compute expectation values using classical shadows

in a differentiable manner.
shot_vec_statistics(circuit) Process measurement results from circuit execution

using a device with a shot vector and return statistics.
states_to_binary(samples, num_wires[, dtype]) Convert basis states from base 10 to binary represen-

tation.
statistics(circuit[, shot_range, bin_size]) Process measurement results from circuit execution

and return statistics.
supports_observable(observable) Checks if an observable is supported by this device.

Raises a ValueError,
supports_operation(operation) Checks if an operation is supported by this device.
var(observable[, shot_range, bin_size]) Returns the variance of observable on specified wires.
vn_entropy(wires, log_base) Returns the Von Neumann entropy prior to measure-

ment.

access_state(wires=None)
Check that the device has access to an internal state and return it if available.

Parameters
wires (Wires) – wires of the reduced system

Raises
QuantumFunctionError – if the device is not capable of returning the state

Returns
the state or the density matrix of the device

Return type
array or tensor

static active_wires(operators)
Returns the wires acted on by a set of operators.

Parameters
operators (list[Operation]) – operators for which we are gathering the active wires

Returns
wires activated by the specified operators

34 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
Wires

adjoint_jacobian(tape: QuantumTape, starting_state=None, use_device_state=False)
Implements the adjoint method outlined in Jones and Gacon to differentiate an input tape.

After a forward pass, the circuit is reversed by iteratively applying adjoint gates to scan backwards through
the circuit.

Note: The adjoint differentiation method has the following restrictions:

• As it requires knowledge of the statevector, only statevector simulator devices can be used.

• Only expectation values are supported as measurements.

• Does not work for parametrized observables like Hamiltonian or Hermitian.

Parameters
tape (.QuantumTape) – circuit that the function takes the gradient of

Keyword Arguments

• starting_state (tensor_like) – post-forward pass state to start execution with. It
should be complex-valued. Takes precedence over use_device_state.

• use_device_state (bool) – use current device state to initialize. A forward pass of the
same circuit should be the last thing the device has executed. If a starting_state is
provided, that takes precedence.

Returns
the derivative of the tape with respect to trainable parameters. Dimensions are
(len(observables), len(trainable_params)).

Return type
array or tuple[array]

Raises
QuantumFunctionError – if the input tape has measurements that are not expectation values
or contains a multi-parameter operation aside from Rot

analytic_probability(wires=None)
Return the (marginal) probability of each computational basis state from the last run of the device.

PennyLane uses the convention |𝑞0, 𝑞1, . . . , 𝑞𝑁−1⟩ where 𝑞0 is the most significant bit.

If no wires are specified, then all the basis states representable by the device are considered and no marginal-
ization takes place.

Note: marginal_prob() may be used as a utility method to calculate the marginal probability distribu-
tion.

Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
list of the probabilities

2.7. pennylane-braket 35

https://arxiv.org/abs/2009.02823

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
array[float]

apply(operations: list[ParametrizedEvolution], **kwargs)
Convert the pulse operation to an AHS program and run on the connected device

Parameters
operations (list[ParametrizedEvolution]) – a list containing a single
ParametrizedEvolution operator

batch_execute(circuits)
Execute a batch of quantum circuits on the device.

The circuits are represented by tapes, and they are executed one-by-one using the device’s executemethod.
The results are collected in a list.

For plugin developers: This function should be overwritten if the device can efficiently run multiple circuits
on a backend, for example using parallel and/or asynchronous executions.

Parameters
circuits (list[QuantumTape]) – circuits to execute on the device

Returns
list of measured value(s)

Return type
list[array[float]]

batch_transform(circuit: QuantumTape)
Apply a differentiable batch transform for preprocessing a circuit prior to execution. This method is called
directly by the QNode, and should be overwritten if the device requires a transform that generates multiple
circuits prior to execution.

By default, this method contains logic for generating multiple circuits, one per term, of a circuit that ter-
minates in expval(H), if the underlying device does not support Hamiltonian expectation values, or if the
device requires finite shots.

Warning: This method will be tracked by autodifferentiation libraries, such as Autograd, JAX, Tensor-
Flow, and Torch. Please make sure to use qml.math for autodiff-agnostic tensor processing if required.

Parameters
circuit (.QuantumTape) – the circuit to preprocess

Returns
Returns a tuple containing the sequence of circuits to be executed, and a post-processing
function to be applied to the list of evaluated circuit results.

Return type
tuple[Sequence[.QuantumTape], callable]

classmethod capabilities()

Get the capabilities of this device class.

Inheriting classes that change or add capabilities must override this method, for example via

36 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

@classmethod
def capabilities(cls):

capabilities = super().capabilities().copy()
capabilities.update(

supports_a_new_capability=True,
)
return capabilities

Returns
results

Return type
dict[str->*]

check_validity(queue, observables)
Checks whether the operations and observables in queue are all supported by the device.

Parameters

• queue (Iterable[Operation]) – quantum operation objects which are intended to be
applied on the device

• observables (Iterable[Observable]) – observables which are intended to be evalu-
ated on the device

Raises
Exception – if there are operations in the queue or observables that the device does not
support

classical_shadow(obs, circuit)
Returns the measured bits and recipes in the classical shadow protocol.

The protocol is described in detail in the classical shadows paper. This measurement process returns the
randomized Pauli measurements (the recipes) that are performed for each qubit and snapshot as an integer:

• 0 for Pauli X,

• 1 for Pauli Y, and

• 2 for Pauli Z.

It also returns the measurement results (the bits); 0 if the 1 eigenvalue is sampled, and 1 if the -1 eigenvalue
is sampled.

The device shots are used to specify the number of snapshots. If T is the number of shots and n is the
number of qubits, then both the measured bits and the Pauli measurements have shape (T, n).

This implementation is device-agnostic and works by executing single-shot tapes containing randomized
Pauli observables. Devices should override this if they can offer cleaner or faster implementations.

See also:

classical_shadow()

Parameters

• obs (ClassicalShadowMP) – The classical shadow measurement process

• circuit (QuantumTape) – The quantum tape that is being executed

2.7. pennylane-braket 37

https://arxiv.org/abs/2002.08953

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
A tensor with shape (2, T, n), where the first row represents the measured bits and the
second represents the recipes used.

Return type
tensor_like[int]

create_ahs_program(evolution: ParametrizedEvolution)
Create AHS program for upload to hardware from a ParametrizedEvolution

Parameters
evolution (ParametrizedEvolution) – the PennyLane operator describing the pulse to
be converted into an AnalogHamiltonianSimulation program

Returns

a program containing the register and drive
information for running an AHS task on simulation or hardware

Return type
AnalogHamiltonianSimulation

custom_expand(fn)
Register a custom expansion function for the device.

Example

dev = qml.device("default.qubit.legacy", wires=2)

@dev.custom_expand
def my_expansion_function(self, tape, max_expansion=10):

...
can optionally call the default device expansion
tape = self.default_expand_fn(tape, max_expansion=max_expansion)
return tape

The custom device expansion function must have arguments self (the device object), tape (the input cir-
cuit to transform and execute), and max_expansion (the number of times the circuit should be expanded).

The default default_expand_fn() method of the original device may be called. It is highly recom-
mended to call this before returning, to ensure that the expanded circuit is supported on the device.

default_expand_fn(circuit, max_expansion=10)
Method for expanding or decomposing an input circuit. This method should be overwritten if custom
expansion logic is required.

By default, this method expands the tape if:

• state preparation operations are called mid-circuit,

• nested tapes are present,

• any operations are not supported on the device, or

• multiple observables are measured on the same wire.

Parameters

• circuit (.QuantumTape) – the circuit to expand.

38 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• max_expansion (int) – The number of times the circuit should be expanded. Expansion
occurs when an operation or measurement is not supported, and results in a gate decompo-
sition. If any operations in the decomposition remain unsupported by the device, another
expansion occurs.

Returns
The expanded/decomposed circuit, such that the device will natively support all operations.

Return type
.QuantumTape

define_wire_map(wires)
Create the map from user-provided wire labels to the wire labels used by the device.

The default wire map maps the user wire labels to wire labels that are consecutive integers.

However, by overwriting this function, devices can specify their preferred, non-consecutive and/or non-
integer wire labels.

Parameters
wires (Wires) – user-provided wires for this device

Returns
dictionary specifying the wire map

Return type
OrderedDict

Example

>>> dev = device('my.device', wires=['b', 'a'])
>>> dev.wire_map()
OrderedDict([(<Wires = ['a']>, <Wires = [0]>), (<Wires = ['b']>, <Wires = [1]>
→˓)])

density_matrix(wires)
Returns the reduced density matrix over the given wires.

Parameters
wires (Wires) – wires of the reduced system

Returns
complex array of shape (2 ** len(wires), 2 ** len(wires)) representing the re-
duced density matrix of the state prior to measurement.

Return type
array[complex]

estimate_probability(wires=None, shot_range=None, bin_size=None)
Return the estimated probability of each computational basis state using the generated samples.

Parameters

• wires (Iterable[Number, str], Number, str, Wires) – wires to calculate
marginal probabilities for. Wires not provided are traced out of the system.

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

2.7. pennylane-braket 39

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
list of the probabilities

Return type
array[float]

execute(circuit, **kwargs)
It executes a queue of quantum operations on the device and then measure the given observables.

For plugin developers: instead of overwriting this, consider implementing a suitable subset of

• apply()

• generate_samples()

• probability()

Additional keyword arguments may be passed to this method that can be utilised by apply(). An example
would be passing the QNode hash that can be used later for parametric compilation.

Parameters
circuit (QuantumTape) – circuit to execute on the device

Raises
QuantumFunctionError – if the value of return_type is not supported

Returns
measured value(s)

Return type
array[float]

execute_and_gradients(circuits, method='jacobian', **kwargs)
Execute a batch of quantum circuits on the device, and return both the results and the gradients.

The circuits are represented by tapes, and they are executed one-by-one using the device’s executemethod.
The results and the corresponding Jacobians are collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently run multiple circuits
on a backend, for example using parallel and/or asynchronous executions, and return both the results and
the Jacobians.

Parameters

• circuits (list[.tape.QuantumTape]) – circuits to execute on the device

• method (str) – the device method to call to compute the Jacobian of a single circuit

• **kwargs – keyword argument to pass when calling method

Returns
Tuple containing list of measured value(s) and list of Jacobians. Returned Jacobians should
be of shape (output_shape, num_params).

Return type
tuple[list[array[float]], list[array[float]]]

execution_context()

The device execution context used during calls to execute().

You can overwrite this function to return a context manager in case your quantum library requires that; all
operations and method calls (including apply() and expval()) are then evaluated within the context of
this context manager (see the source of execute() for more details).

40 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

expand_fn(circuit, max_expansion=10)
Method for expanding or decomposing an input circuit. Can be the default or a custom expansion method,
see Device.default_expand_fn() and Device.custom_expand() for more details.

Parameters

• circuit (.QuantumTape) – the circuit to expand.

• max_expansion (int) – The number of times the circuit should be expanded. Expansion
occurs when an operation or measurement is not supported, and results in a gate decompo-
sition. If any operations in the decomposition remain unsupported by the device, another
expansion occurs.

Returns
The expanded/decomposed circuit, such that the device will natively support all operations.

Return type
.QuantumTape

expval(observable, shot_range=None, bin_size=None)
Returns the expectation value of observable on specified wires.

Note: all arguments accept _lists_, which indicate a tensor product of observables.

Parameters

• observable (str or list[str]) – name of the observable(s)

• wires (Wires) – wires the observable(s) are to be measured on

• par (tuple or list[tuple]]) – parameters for the observable(s)

Returns
expectation value 𝐴 = 𝜓𝐴𝜓

Return type
float

static generate_basis_states(num_wires, dtype=<class 'numpy.uint32'>)
Generates basis states in binary representation according to the number of wires specified.

The states_to_binary method creates basis states faster (for larger systems at times over x25 times faster)
than the approach using itertools.product, at the expense of using slightly more memory.

Due to the large size of the integer arrays for more than 32 bits, memory allocation errors may arise in the
states_to_binary method. Hence we constraint the dtype of the array to represent unsigned integers on 32
bits. Due to this constraint, an overflow occurs for 32 or more wires, therefore this approach is used only
for fewer wires.

For smaller number of wires speed is comparable to the next approach (using itertools.product), hence
we resort to that one for testing purposes.

Parameters

• num_wires (int) – the number wires

• dtype=np.uint32 (type) – the data type of the arrays to use

Returns
the sampled basis states

Return type
array[int]

2.7. pennylane-braket 41

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

generate_samples()

Returns the computational basis samples measured for all wires.

Returns
array of samples in the shape (dev.shots, dev.num_wires)

Return type
array[complex]

gradients(circuits, method='jacobian', **kwargs)
Return the gradients of a batch of quantum circuits on the device.

The gradient method method is called sequentially for each circuit, and the corresponding Jacobians are
collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently compute the gradient
of multiple circuits on a backend, for example using parallel and/or asynchronous executions.

Parameters

• circuits (list[.tape.QuantumTape]) – circuits to execute on the device

• method (str) – the device method to call to compute the Jacobian of a single circuit

• **kwargs – keyword argument to pass when calling method

Returns
List of Jacobians. Returned Jacobians should be of shape (output_shape, num_params).

Return type
list[array[float]]

map_wires(wires)
Map the wire labels of wires using this device’s wire map.

Parameters
wires (Wires) – wires whose labels we want to map to the device’s internal labelling scheme

Returns
wires with new labels

Return type
Wires

marginal_prob(prob, wires=None)
Return the marginal probability of the computational basis states by summing the probabiliites on the non-
specified wires.

If no wires are specified, then all the basis states representable by the device are considered and no marginal-
ization takes place.

Note: If the provided wires are not in the order as they appear on the device, the returned marginal
probabilities take this permutation into account.

For example, if the addressable wires on this device are Wires([0, 1, 2]) and this function gets passed
wires=[2, 0], then the returned marginal probability vector will take this ‘reversal’ of the two wires into
account:

P(2,0) = [|00⟩, |10⟩, |01⟩, |11⟩]

42 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters

• prob – The probabilities to return the marginal probabilities for

• wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
array of the resulting marginal probabilities.

Return type
array[float]

mutual_info(wires0, wires1, log_base)
Returns the mutual information prior to measurement:

𝐼(𝐴,𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵)− 𝑆(𝜌𝐴𝐵)

where 𝑆 is the von Neumann entropy.

Parameters

• wires0 (Wires) – wires of the first subsystem

• wires1 (Wires) – wires of the second subsystem

• log_base (float) – base to use in the logarithm

Returns
the mutual information

Return type
float

order_wires(subset_wires)
Given some subset of device wires return a Wires object with the same wires; sorted according to the device
wire map.

Parameters
subset_wires (Wires) – The subset of device wires (in any order).

Raises
ValueError – Could not find some or all subset wires subset_wires in device wires de-
vice_wires.

Returns
a new Wires object containing the re-ordered wires set

Return type
ordered_wires (Wires)

post_apply()

Called during execute() after the individual operations have been executed.

post_measure()

Called during execute() after the individual observables have been measured.

pre_apply()

Called during execute() before the individual operations are executed.

pre_measure()

Called during execute() before the individual observables are measured.

2.7. pennylane-braket 43

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

probability(wires=None, shot_range=None, bin_size=None)
Return either the analytic probability or estimated probability of each computational basis state.

Devices that require a finite number of shots always return the estimated probability.

Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
list of the probabilities

Return type
array[float]

reset()

Reset the backend state.

After the reset, the backend should be as if it was just constructed. Most importantly the quantum state is
reset to its initial value.

sample(observable, shot_range=None, bin_size=None, counts=False)
Return samples of an observable.

Parameters

• observable (Observable) – the observable to sample

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

• counts (bool) – whether counts (True) or raw samples (False) should be returned

Raises
EigvalsUndefinedError – if no information is available about the eigenvalues of the ob-
servable

Returns
samples in an array of dimension (shots,) or counts

Return type
Union[array[float], dict, list[dict]]

sample_basis_states(number_of_states, state_probability)
Sample from the computational basis states based on the state probability.

This is an auxiliary method to the generate_samples method.

Parameters

• number_of_states (int) – the number of basis states to sample from

• state_probability (array[float]) – the computational basis probability vector

Returns
the sampled basis states

Return type
array[int]

44 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

shadow_expval(obs, circuit)
Compute expectation values using classical shadows in a differentiable manner.

Please refer to shadow_expval() for detailed documentation.

Parameters

• obs (ClassicalShadowMP) – The classical shadow expectation value measurement pro-
cess

• circuit (QuantumTape) – The quantum tape that is being executed

Returns
expectation value estimate.

Return type
float

shot_vec_statistics(circuit: QuantumTape)
Process measurement results from circuit execution using a device with a shot vector and return statistics.

This is an auxiliary method of execute and uses statistics.

When using shot vectors, measurement results for each item of the shot vector are contained in a tuple.

Parameters
circuit (QuantumTape) – circuit to execute on the device

Raises
QuantumFunctionError – if the value of return_type is not supported

Returns
stastics for each shot item from the shot vector

Return type
tuple

static states_to_binary(samples, num_wires, dtype=<class 'numpy.int64'>)
Convert basis states from base 10 to binary representation.

This is an auxiliary method to the generate_samples method.

Parameters

• samples (array[int]) – samples of basis states in base 10 representation

• num_wires (int) – the number of qubits

• dtype (type) – Type of the internal integer array to be used. Can be important to specify
for large systems for memory allocation purposes.

Returns
basis states in binary representation

Return type
array[int]

statistics(circuit: QuantumTape, shot_range=None, bin_size=None)
Process measurement results from circuit execution and return statistics.

This includes returning expectation values, variance, samples, probabilities, states, and density matrices.

Parameters

• circuit (QuantumTape) – the quantum tape currently being executed

2.7. pennylane-braket 45

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

Raises
QuantumFunctionError – if the value of return_type is not supported

Returns
the corresponding statistics

Return type
Union[float, List[float]]

supports_observable(observable)

Checks if an observable is supported by this device. Raises a ValueError,
if not a subclass or string of an Observable was passed.

Parameters
observable (type or str) – observable to be checked

Raises
ValueError – if observable is not a Observable class or string

Returns
True iff supplied observable is supported

Return type
bool

supports_operation(operation)
Checks if an operation is supported by this device.

Parameters
operation (type or str) – operation to be checked

Raises
ValueError – if operation is not a Operation class or string

Returns
True if supplied operation is supported

Return type
bool

var(observable, shot_range=None, bin_size=None)
Returns the variance of observable on specified wires.

Note: all arguments support _lists_, which indicate a tensor product of observables.

Parameters

• observable (str or list[str]) – name of the observable(s)

• wires (Wires) – wires the observable(s) is to be measured on

• par (tuple or list[tuple]]) – parameters for the observable(s)

Raises
NotImplementedError – if the device does not support variance computation

46 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
variance var(𝐴) = 𝜓𝐴2𝜓 − 𝜓𝐴𝜓2

Return type
float

vn_entropy(wires, log_base)
Returns the Von Neumann entropy prior to measurement.

𝑆(𝜌) = −Tr(𝜌 log(𝜌))

Parameters

• wires (Wires) – Wires of the considered subsystem.

• log_base (float) – Base for the logarithm, default is None the natural logarithm is used
in this case.

Returns
returns the Von Neumann entropy

Return type
float

BraketAwsQubitDevice

class BraketAwsQubitDevice(wires: int | Iterable, device_arn: str, s3_destination_folder: S3DestinationFolder
| None = None, *, shots: int | None | Shots = Shots.DEFAULT ,
poll_timeout_seconds: float = 432000, poll_interval_seconds: float = 1,
aws_session: AwsSession | None = None, parallel: bool = False, max_parallel:
int | None = None, max_connections: int = 100, max_retries: int = 3,
**run_kwargs)

Bases: BraketQubitDevice

Amazon Braket AwsDevice qubit device for PennyLane.

Parameters

• wires (int or Iterable[Number, str]]) – Number of subsystems represented by the
device, or iterable that contains unique labels for the subsystems as numbers (i.e., [-1, 0,
2]) or strings (['ancilla', 'q1', 'q2']).

• device_arn (str) – The ARN identifying the AwsDevice to be used to run circuits; The
corresponding AwsDevice must support quantum circuits via OpenQASM. You can get de-
vice ARNs using AwsDevice.get_devices, from the Amazon Braket console or from the
Amazon Braket Developer Guide.

• s3_destination_folder (AwsSession.S3DestinationFolder) – Name of the S3
bucket and folder, specified as a tuple.

• poll_timeout_seconds (float) – Total time in seconds to wait for results before timing
out.

• poll_interval_seconds (float) – The polling interval for results in seconds.

• shots (int, None or Shots.DEFAULT) – Number of circuit evaluations or random sam-
ples included, to estimate expectation values of observables. If set to Shots.DEFAULT, uses
the default number of shots specified by the remote device. If shots is set to 0 or None, the
device runs in analytic mode (calculations will be exact). Analytic mode is not available on
QPU and hence an error will be raised. Default: Shots.DEFAULT

2.7. pennylane-braket 47

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• aws_session (Optional[AwsSession]) – An AwsSession object created to manage inter-
actions with AWS services, to be supplied if extra control is desired. Default: None Default:
False

• max_parallel (int, optional) – Maximum number of tasks to run on AWS in par-
allel. Batch creation will fail if this value is greater than the maximum allowed concur-
rent tasks on the device. If unspecified, uses defaults defined in AwsDevice. Ignored if
parallel=False.

• max_connections (int) – The maximum number of connections in the Boto3 connec-
tion pool. Also the maximum number of thread pool workers for the batch. Ignored if
parallel=False.

• max_retries (int) – The maximum number of retries to use for batch execution. When
executing tasks in parallel, failed tasks will be retried up to max_retries times. Ignored if
parallel=False.

• verbatim (bool) – Whether to verbatim mode for the device. Note that verbatim mode only
supports the native gate set of the device. Default False.

• **run_kwargs – Variable length keyword arguments for braket.devices.Device.
run().

48 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

analytic Whether shots is None or not.
author

circuit The last circuit run on this device.
circuit_hash The hash of the circuit upon the last execution.
measurement_map Mapping used to override the logic of measurement

processes.
name

num_executions Number of times this device is executed by the eval-
uation of QNodes running on this device

obs_queue The observables to be measured and returned.
observables set() -> new empty set object set(iterable) -> new set

object
op_queue The operation queue to be applied.
operations The set of names of PennyLane operations that the

device supports.
parallel

parameters Mapping from free parameter index to the list of
Operations in the device queue that depend on it.

pennylane_requires

pulse_settings Dictionary of constants set by the hardware (qubit
resonant frequencies, inter-qubit connection graph,
wires and anharmonicities).

short_name

shot_vector Returns the shot vector, a sparse representation of the
shot sequence used by the device when evaluating
QNodes.

shots Number of circuit evaluations/random samples used
to estimate expectation values of observables

state Returns the state vector of the circuit prior to mea-
surement.

stopping_condition Returns the stopping condition for the device.
task The task corresponding to the last run circuit.
use_grouping

version

wire_map Ordered dictionary that defines the map from user-
provided wire labels to the wire labels used on this
device

wires All wires that can be addressed on this device

analytic

Whether shots is None or not. Kept for backwards compatability.

author = 'Amazon Web Services'

circuit

The last circuit run on this device.

2.7. pennylane-braket 49

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Type
Circuit

circuit_hash

The hash of the circuit upon the last execution.

This can be used by devices in apply() for parametric compilation.

measurement_map = {}

Mapping used to override the logic of measurement processes. The dictionary maps a measurement class
to a string containing the name of a device’s method that overrides the measurement process. The method
defined by the device should have the following arguments:

• measurement (MeasurementProcess): measurement to override

• shot_range (tuple[int]): 2-tuple of integers specifying the range of samples
to use. If not specified, all samples are used.

• bin_size (int): Divides the shot range into bins of size bin_size, and
returns the measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

Note: When overriding the logic of a MeasurementTransform, the method defined by the device should
only have a single argument:

• tape: quantum tape to transform

Example:

Let’s create a device that inherits from DefaultQubitLegacy and overrides the logic of the qml.sample
measurement. To do so we will need to update the measurement_map dictionary:

class NewDevice(DefaultQubitLegacy):
def __init__(self, wires, shots):

super().__init__(wires=wires, shots=shots)
self.measurement_map[SampleMP] = "sample_measurement"

def sample_measurement(self, measurement, shot_range=None, bin_size=None):
return 2

>>> dev = NewDevice(wires=2, shots=1000)
>>> @qml.qnode(dev)
... def circuit():
... return qml.sample()
>>> circuit()
tensor(2, requires_grad=True)

name = 'Braket AwsDevice for PennyLane'

num_executions

Number of times this device is executed by the evaluation of QNodes running on this device

Returns
number of executions

Return type
int

50 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

obs_queue

The observables to be measured and returned.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
list[~.operation.Observable]

observables

op_queue

The operation queue to be applied.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
list[~.operation.Operation]

operations

The set of names of PennyLane operations that the device supports.

Type
frozenset[str]

parallel

parameters

Mapping from free parameter index to the list of Operations in the device queue that depend on it.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
the mapping

Return type
dict[int->list[ParameterDependency]]

pennylane_requires = '>=0.30.0'

pulse_settings

Dictionary of constants set by the hardware (qubit resonant frequencies, inter-qubit connection graph, wires
and anharmonicities).

Used to enable initializing hardware-consistent Hamiltonians by returning values that would need to be
passed, i.e.:

>>> dev_remote = qml.device('braket.aws.qubit',
>>> wires=8,
>>> arn='arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy
→˓')
>>> pulse_settings = dev_remote.pulse_settings
>>> H_int = qml.pulse.transmon_interaction(**pulse_settings, coupling=0.02)

2.7. pennylane-braket 51

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

By passing the pulse_settings from the remote device to transmon_interaction, an H_int Hamil-
tonian term is created using the constants specific to the hardware. This is relevant for simulating the
hardware in PennyLane on the default.qubit device.

Note that the user must supply coupling coefficients, as these are not available from the hardware backend.

short_name = 'braket.aws.qubit'

shot_vector

Returns the shot vector, a sparse representation of the shot sequence used by the device when evaluating
QNodes.

Example

>>> dev = qml.device("default.qubit.legacy", wires=2, shots=[3, 1, 2, 2, 2, 2,␣
→˓6, 1, 1, 5, 12, 10, 10])
>>> dev.shots
57
>>> dev.shot_vector
[ShotCopies(3 shots x 1),
ShotCopies(1 shots x 1),
ShotCopies(2 shots x 4),
ShotCopies(6 shots x 1),
ShotCopies(1 shots x 2),
ShotCopies(5 shots x 1),
ShotCopies(12 shots x 1),
ShotCopies(10 shots x 2)]

The sparse representation of the shot sequence is returned, where tuples indicate the number of times a shot
integer is repeated.

Type
list[ShotCopies]

shots

Number of circuit evaluations/random samples used to estimate expectation values of observables

state

Returns the state vector of the circuit prior to measurement.

Note: Only state vector simulators support this property. Please see the plugin documentation for more
details.

stopping_condition

Returns the stopping condition for the device. The returned function accepts a queuable object (including
a PennyLane operation and observable) and returns True if supported by the device.

Type
.BooleanFn

task

The task corresponding to the last run circuit.

Type
QuantumTask

52 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

use_grouping

version = '1.24.2'

wire_map

Ordered dictionary that defines the map from user-provided wire labels to the wire labels used on this device

wires

All wires that can be addressed on this device

access_state([wires]) Check that the device has access to an internal state
and return it if available.

active_wires(operators) Returns the wires acted on by a set of operators.
adjoint_jacobian(tape[, starting_state, ...]) Implements the adjoint method outlined in Jones and

Gacon to differentiate an input tape.
analytic_probability([wires]) Return the (marginal) probability of each computa-

tional basis state from the last run of the device.
apply(operations[, rotations, ...]) Instantiate Braket Circuit object.
batch_execute(circuits, **run_kwargs) Execute a batch of quantum circuits on the device.
batch_transform(circuit) Apply a differentiable batch transform for preprocess-

ing a circuit prior to execution.
capabilities() Add support for AG on sv1
check_validity(queue, observables) Check validity of pulse operations before running the

standard check_validity function
classical_shadow(obs, circuit) Returns the measured bits and recipes in the classical

shadow protocol.
custom_expand(fn) Register a custom expansion function for the device.
default_expand_fn(circuit[, max_expansion]) Method for expanding or decomposing an input cir-

cuit.
define_wire_map(wires) Create the map from user-provided wire labels to the

wire labels used by the device.
density_matrix(wires) Returns the reduced density matrix over the given

wires.
estimate_probability([wires, shot_range, ...]) Return the estimated probability of each computa-

tional basis state using the generated samples.
execute(circuit[, compute_gradient]) It executes a queue of quantum operations on the de-

vice and then measure the given observables.
execute_and_gradients(circuits, **kwargs) Execute a list of circuits and calculate their gradients.
execution_context() The device execution context used during calls to

execute().
expand_fn(circuit[, max_expansion]) Method for expanding or decomposing an input cir-

cuit.
expval(observable[, shot_range, bin_size]) Returns the expectation value of observable on spec-

ified wires.
generate_basis_states(num_wires[, dtype]) Generates basis states in binary representation ac-

cording to the number of wires specified.
generate_samples() Returns the computational basis samples generated

for all wires.
gradients(circuits[, method]) Return the gradients of a batch of quantum circuits on

the device.
map_wires(wires) Map the wire labels of wires using this device's wire

map.
continues on next page

2.7. pennylane-braket 53

https://arxiv.org/abs/2009.02823
https://arxiv.org/abs/2009.02823

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Table 2 – continued from previous page
marginal_prob(prob[, wires]) Return the marginal probability of the computational

basis states by summing the probabiliites on the non-
specified wires.

mutual_info(wires0, wires1, log_base) Returns the mutual information prior to measure-
ment:

order_wires(subset_wires) Given some subset of device wires return a Wires ob-
ject with the same wires; sorted according to the de-
vice wire map.

post_apply() Called during execute() after the individual opera-
tions have been executed.

post_measure() Called during execute() after the individual ob-
servables have been measured.

pre_apply() Called during execute() before the individual oper-
ations are executed.

pre_measure() Called during execute() before the individual ob-
servables are measured.

probability([wires, shot_range, bin_size]) Return either the analytic probability or estimated
probability of each computational basis state.

reset() Reset the backend state.
sample(observable[, shot_range, bin_size, ...]) Return samples of an observable.
sample_basis_states(number_of_states, ...) Sample from the computational basis states based on

the state probability.
shadow_expval(obs, circuit) Compute expectation values using classical shadows

in a differentiable manner.
shot_vec_statistics(circuit) Process measurement results from circuit execution

using a device with a shot vector and return statistics.
states_to_binary(samples, num_wires[, dtype]) Convert basis states from base 10 to binary represen-

tation.
statistics(braket_result, measurements) Processes measurement results from a Braket task re-

sult and returns statistics.
supports_observable(observable) Checks if an observable is supported by this device.

Raises a ValueError,
supports_operation(operation) Checks if an operation is supported by this device.
var(observable[, shot_range, bin_size]) Returns the variance of observable on specified wires.
vn_entropy(wires, log_base) Returns the Von Neumann entropy prior to measure-

ment.

access_state(wires=None)
Check that the device has access to an internal state and return it if available.

Parameters
wires (Wires) – wires of the reduced system

Raises
QuantumFunctionError – if the device is not capable of returning the state

Returns
the state or the density matrix of the device

Return type
array or tensor

static active_wires(operators)
Returns the wires acted on by a set of operators.

54 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters
operators (list[Operation]) – operators for which we are gathering the active wires

Returns
wires activated by the specified operators

Return type
Wires

adjoint_jacobian(tape: QuantumTape, starting_state=None, use_device_state=False)
Implements the adjoint method outlined in Jones and Gacon to differentiate an input tape.

After a forward pass, the circuit is reversed by iteratively applying adjoint gates to scan backwards through
the circuit.

Note: The adjoint differentiation method has the following restrictions:

• As it requires knowledge of the statevector, only statevector simulator devices can be used.

• Only expectation values are supported as measurements.

• Does not work for parametrized observables like Hamiltonian or Hermitian.

Parameters
tape (.QuantumTape) – circuit that the function takes the gradient of

Keyword Arguments

• starting_state (tensor_like) – post-forward pass state to start execution with. It
should be complex-valued. Takes precedence over use_device_state.

• use_device_state (bool) – use current device state to initialize. A forward pass of the
same circuit should be the last thing the device has executed. If a starting_state is
provided, that takes precedence.

Returns
the derivative of the tape with respect to trainable parameters. Dimensions are
(len(observables), len(trainable_params)).

Return type
array or tuple[array]

Raises
QuantumFunctionError – if the input tape has measurements that are not expectation values
or contains a multi-parameter operation aside from Rot

analytic_probability(wires=None)
Return the (marginal) probability of each computational basis state from the last run of the device.

PennyLane uses the convention |𝑞0, 𝑞1, . . . , 𝑞𝑁−1⟩ where 𝑞0 is the most significant bit.

If no wires are specified, then all the basis states representable by the device are considered and no marginal-
ization takes place.

Note: marginal_prob() may be used as a utility method to calculate the marginal probability distribu-
tion.

2.7. pennylane-braket 55

https://arxiv.org/abs/2009.02823

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
list of the probabilities

Return type
array[float]

apply(operations: Sequence[Operation], rotations: Sequence[Operation] | None = None,
use_unique_params: bool = False, *, trainable_indices: frozenset[int] | None = None, **run_kwargs)
→ Circuit

Instantiate Braket Circuit object.

batch_execute(circuits, **run_kwargs)
Execute a batch of quantum circuits on the device.

The circuits are represented by tapes, and they are executed one-by-one using the device’s executemethod.
The results are collected in a list.

For plugin developers: This function should be overwritten if the device can efficiently run multiple circuits
on a backend, for example using parallel and/or asynchronous executions.

Parameters
circuits (list[QuantumTape]) – circuits to execute on the device

Returns
list of measured value(s)

Return type
list[array[float]]

batch_transform(circuit: QuantumTape)
Apply a differentiable batch transform for preprocessing a circuit prior to execution. This method is called
directly by the QNode, and should be overwritten if the device requires a transform that generates multiple
circuits prior to execution.

By default, this method contains logic for generating multiple circuits, one per term, of a circuit that ter-
minates in expval(H), if the underlying device does not support Hamiltonian expectation values, or if the
device requires finite shots.

Warning: This method will be tracked by autodifferentiation libraries, such as Autograd, JAX, Tensor-
Flow, and Torch. Please make sure to use qml.math for autodiff-agnostic tensor processing if required.

Parameters
circuit (.QuantumTape) – the circuit to preprocess

Returns
Returns a tuple containing the sequence of circuits to be executed, and a post-processing
function to be applied to the list of evaluated circuit results.

Return type
tuple[Sequence[.QuantumTape], callable]

capabilities()

Add support for AG on sv1

56 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

check_validity(queue, observables)
Check validity of pulse operations before running the standard check_validity function

Checks whether the operations and observables in queue are all supported by the device. Runs the standard
check_validity function for a PennyLane device, and an additional check to validate any pulse-operations
in the form of a ParametrizedEvolution operation.

Parameters

• queue (Iterable[Operation]) – quantum operation objects which are intended to be
applied on the device

• observables (Iterable[Observable]) – observables which are intended to be evalu-
ated on the device

Raises

• DeviceError – if there are operations in the queue or observables that the device does not
support

• RuntimeError – if there are ParametrizedEvolution operations in the queue that are not
supported because of invalid pulse parameters

classical_shadow(obs, circuit)
Returns the measured bits and recipes in the classical shadow protocol.

The protocol is described in detail in the classical shadows paper. This measurement process returns the
randomized Pauli measurements (the recipes) that are performed for each qubit and snapshot as an integer:

• 0 for Pauli X,

• 1 for Pauli Y, and

• 2 for Pauli Z.

It also returns the measurement results (the bits); 0 if the 1 eigenvalue is sampled, and 1 if the -1 eigenvalue
is sampled.

The device shots are used to specify the number of snapshots. If T is the number of shots and n is the
number of qubits, then both the measured bits and the Pauli measurements have shape (T, n).

This implementation is device-agnostic and works by executing single-shot tapes containing randomized
Pauli observables. Devices should override this if they can offer cleaner or faster implementations.

See also:

classical_shadow()

Parameters

• obs (ClassicalShadowMP) – The classical shadow measurement process

• circuit (QuantumTape) – The quantum tape that is being executed

Returns
A tensor with shape (2, T, n), where the first row represents the measured bits and the
second represents the recipes used.

Return type
tensor_like[int]

2.7. pennylane-braket 57

https://arxiv.org/abs/2002.08953

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

custom_expand(fn)
Register a custom expansion function for the device.

Example

dev = qml.device("default.qubit.legacy", wires=2)

@dev.custom_expand
def my_expansion_function(self, tape, max_expansion=10):

...
can optionally call the default device expansion
tape = self.default_expand_fn(tape, max_expansion=max_expansion)
return tape

The custom device expansion function must have arguments self (the device object), tape (the input cir-
cuit to transform and execute), and max_expansion (the number of times the circuit should be expanded).

The default default_expand_fn() method of the original device may be called. It is highly recom-
mended to call this before returning, to ensure that the expanded circuit is supported on the device.

default_expand_fn(circuit, max_expansion=10)
Method for expanding or decomposing an input circuit. This method should be overwritten if custom
expansion logic is required.

By default, this method expands the tape if:

• state preparation operations are called mid-circuit,

• nested tapes are present,

• any operations are not supported on the device, or

• multiple observables are measured on the same wire.

Parameters

• circuit (.QuantumTape) – the circuit to expand.

• max_expansion (int) – The number of times the circuit should be expanded. Expansion
occurs when an operation or measurement is not supported, and results in a gate decompo-
sition. If any operations in the decomposition remain unsupported by the device, another
expansion occurs.

Returns
The expanded/decomposed circuit, such that the device will natively support all operations.

Return type
.QuantumTape

define_wire_map(wires)
Create the map from user-provided wire labels to the wire labels used by the device.

The default wire map maps the user wire labels to wire labels that are consecutive integers.

However, by overwriting this function, devices can specify their preferred, non-consecutive and/or non-
integer wire labels.

Parameters
wires (Wires) – user-provided wires for this device

Returns
dictionary specifying the wire map

58 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
OrderedDict

Example

>>> dev = device('my.device', wires=['b', 'a'])
>>> dev.wire_map()
OrderedDict([(<Wires = ['a']>, <Wires = [0]>), (<Wires = ['b']>, <Wires = [1]>
→˓)])

density_matrix(wires)
Returns the reduced density matrix over the given wires.

Parameters
wires (Wires) – wires of the reduced system

Returns
complex array of shape (2 ** len(wires), 2 ** len(wires)) representing the re-
duced density matrix of the state prior to measurement.

Return type
array[complex]

estimate_probability(wires=None, shot_range=None, bin_size=None)
Return the estimated probability of each computational basis state using the generated samples.

Parameters

• wires (Iterable[Number, str], Number, str, Wires) – wires to calculate
marginal probabilities for. Wires not provided are traced out of the system.

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

Returns
list of the probabilities

Return type
array[float]

execute(circuit: QuantumTape, compute_gradient=False, **run_kwargs)→ ndarray
It executes a queue of quantum operations on the device and then measure the given observables.

For plugin developers: instead of overwriting this, consider implementing a suitable subset of

• apply()

• generate_samples()

• probability()

Additional keyword arguments may be passed to this method that can be utilised by apply(). An example
would be passing the QNode hash that can be used later for parametric compilation.

Parameters
circuit (QuantumTape) – circuit to execute on the device

Raises
QuantumFunctionError – if the value of return_type is not supported

2.7. pennylane-braket 59

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
measured value(s)

Return type
array[float]

execute_and_gradients(circuits, **kwargs)
Execute a list of circuits and calculate their gradients. Returns a list of circuit results and a list of gradi-
ents/jacobians, one of each for each circuit in circuits.

The gradient is returned as a list of floats, 1 float for every instance of a trainable parameter in a gate in the
circuit. Functions like qml.grad or qml.jacobian then use that format to generate a per-parameter format.

execution_context()

The device execution context used during calls to execute().

You can overwrite this function to return a context manager in case your quantum library requires that; all
operations and method calls (including apply() and expval()) are then evaluated within the context of
this context manager (see the source of execute() for more details).

expand_fn(circuit, max_expansion=10)
Method for expanding or decomposing an input circuit. Can be the default or a custom expansion method,
see Device.default_expand_fn() and Device.custom_expand() for more details.

Parameters

• circuit (.QuantumTape) – the circuit to expand.

• max_expansion (int) – The number of times the circuit should be expanded. Expansion
occurs when an operation or measurement is not supported, and results in a gate decompo-
sition. If any operations in the decomposition remain unsupported by the device, another
expansion occurs.

Returns
The expanded/decomposed circuit, such that the device will natively support all operations.

Return type
.QuantumTape

expval(observable, shot_range=None, bin_size=None)
Returns the expectation value of observable on specified wires.

Note: all arguments accept _lists_, which indicate a tensor product of observables.

Parameters

• observable (str or list[str]) – name of the observable(s)

• wires (Wires) – wires the observable(s) are to be measured on

• par (tuple or list[tuple]]) – parameters for the observable(s)

Returns
expectation value 𝐴 = 𝜓𝐴𝜓

Return type
float

static generate_basis_states(num_wires, dtype=<class 'numpy.uint32'>)
Generates basis states in binary representation according to the number of wires specified.

The states_to_binary method creates basis states faster (for larger systems at times over x25 times faster)
than the approach using itertools.product, at the expense of using slightly more memory.

60 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Due to the large size of the integer arrays for more than 32 bits, memory allocation errors may arise in the
states_to_binary method. Hence we constraint the dtype of the array to represent unsigned integers on 32
bits. Due to this constraint, an overflow occurs for 32 or more wires, therefore this approach is used only
for fewer wires.

For smaller number of wires speed is comparable to the next approach (using itertools.product), hence
we resort to that one for testing purposes.

Parameters

• num_wires (int) – the number wires

• dtype=np.uint32 (type) – the data type of the arrays to use

Returns
the sampled basis states

Return type
array[int]

generate_samples()

Returns the computational basis samples generated for all wires.

Note that PennyLane uses the convention |𝑞0, 𝑞1, . . . , 𝑞𝑁−1⟩ where 𝑞0 is the most significant bit.

Warning: This method should be overwritten on devices that generate their own computational basis
samples, with the resulting computational basis samples stored as self._samples.

Returns
array of samples in the shape (dev.shots, dev.num_wires)

Return type
array[complex]

gradients(circuits, method='jacobian', **kwargs)
Return the gradients of a batch of quantum circuits on the device.

The gradient method method is called sequentially for each circuit, and the corresponding Jacobians are
collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently compute the gradient
of multiple circuits on a backend, for example using parallel and/or asynchronous executions.

Parameters

• circuits (list[.tape.QuantumTape]) – circuits to execute on the device

• method (str) – the device method to call to compute the Jacobian of a single circuit

• **kwargs – keyword argument to pass when calling method

Returns
List of Jacobians. Returned Jacobians should be of shape (output_shape, num_params).

Return type
list[array[float]]

map_wires(wires)
Map the wire labels of wires using this device’s wire map.

2.7. pennylane-braket 61

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters
wires (Wires) – wires whose labels we want to map to the device’s internal labelling scheme

Returns
wires with new labels

Return type
Wires

marginal_prob(prob, wires=None)
Return the marginal probability of the computational basis states by summing the probabiliites on the non-
specified wires.

If no wires are specified, then all the basis states representable by the device are considered and no marginal-
ization takes place.

Note: If the provided wires are not in the order as they appear on the device, the returned marginal
probabilities take this permutation into account.

For example, if the addressable wires on this device are Wires([0, 1, 2]) and this function gets passed
wires=[2, 0], then the returned marginal probability vector will take this ‘reversal’ of the two wires into
account:

P(2,0) = [|00⟩, |10⟩, |01⟩, |11⟩]

Parameters

• prob – The probabilities to return the marginal probabilities for

• wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
array of the resulting marginal probabilities.

Return type
array[float]

mutual_info(wires0, wires1, log_base)
Returns the mutual information prior to measurement:

𝐼(𝐴,𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵)− 𝑆(𝜌𝐴𝐵)

where 𝑆 is the von Neumann entropy.

Parameters

• wires0 (Wires) – wires of the first subsystem

• wires1 (Wires) – wires of the second subsystem

• log_base (float) – base to use in the logarithm

Returns
the mutual information

Return type
float

62 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

order_wires(subset_wires)
Given some subset of device wires return a Wires object with the same wires; sorted according to the device
wire map.

Parameters
subset_wires (Wires) – The subset of device wires (in any order).

Raises
ValueError – Could not find some or all subset wires subset_wires in device wires de-
vice_wires.

Returns
a new Wires object containing the re-ordered wires set

Return type
ordered_wires (Wires)

post_apply()

Called during execute() after the individual operations have been executed.

post_measure()

Called during execute() after the individual observables have been measured.

pre_apply()

Called during execute() before the individual operations are executed.

pre_measure()

Called during execute() before the individual observables are measured.

probability(wires=None, shot_range=None, bin_size=None)
Return either the analytic probability or estimated probability of each computational basis state.

Devices that require a finite number of shots always return the estimated probability.

Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
list of the probabilities

Return type
array[float]

reset()

Reset the backend state.

After the reset, the backend should be as if it was just constructed. Most importantly the quantum state is
reset to its initial value.

sample(observable, shot_range=None, bin_size=None, counts=False)
Return samples of an observable.

Parameters

• observable (Observable) – the observable to sample

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

2.7. pennylane-braket 63

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

• counts (bool) – whether counts (True) or raw samples (False) should be returned

Raises
EigvalsUndefinedError – if no information is available about the eigenvalues of the ob-
servable

Returns
samples in an array of dimension (shots,) or counts

Return type
Union[array[float], dict, list[dict]]

sample_basis_states(number_of_states, state_probability)
Sample from the computational basis states based on the state probability.

This is an auxiliary method to the generate_samples method.

Parameters

• number_of_states (int) – the number of basis states to sample from

• state_probability (array[float]) – the computational basis probability vector

Returns
the sampled basis states

Return type
array[int]

shadow_expval(obs, circuit)
Compute expectation values using classical shadows in a differentiable manner.

Please refer to shadow_expval() for detailed documentation.

Parameters

• obs (ClassicalShadowMP) – The classical shadow expectation value measurement pro-
cess

• circuit (QuantumTape) – The quantum tape that is being executed

Returns
expectation value estimate.

Return type
float

shot_vec_statistics(circuit: QuantumTape)
Process measurement results from circuit execution using a device with a shot vector and return statistics.

This is an auxiliary method of execute and uses statistics.

When using shot vectors, measurement results for each item of the shot vector are contained in a tuple.

Parameters
circuit (QuantumTape) – circuit to execute on the device

Raises
QuantumFunctionError – if the value of return_type is not supported

64 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
stastics for each shot item from the shot vector

Return type
tuple

static states_to_binary(samples, num_wires, dtype=<class 'numpy.int64'>)
Convert basis states from base 10 to binary representation.

This is an auxiliary method to the generate_samples method.

Parameters

• samples (array[int]) – samples of basis states in base 10 representation

• num_wires (int) – the number of qubits

• dtype (type) – Type of the internal integer array to be used. Can be important to specify
for large systems for memory allocation purposes.

Returns
basis states in binary representation

Return type
array[int]

statistics(braket_result: GateModelQuantumTaskResult, measurements:
Sequence[MeasurementProcess])→ list[float]

Processes measurement results from a Braket task result and returns statistics.

Parameters

• braket_result (GateModelQuantumTaskResult) – the Braket task result

• measurements (Sequence[MeasurementProcess]) – the list of measurements

Raises
QuantumFunctionError – if the value of return_type is not supported.

Returns
the corresponding statistics

Return type
list[float]

supports_observable(observable)

Checks if an observable is supported by this device. Raises a ValueError,
if not a subclass or string of an Observable was passed.

Parameters
observable (type or str) – observable to be checked

Raises
ValueError – if observable is not a Observable class or string

Returns
True iff supplied observable is supported

Return type
bool

2.7. pennylane-braket 65

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

supports_operation(operation)
Checks if an operation is supported by this device.

Parameters
operation (type or str) – operation to be checked

Raises
ValueError – if operation is not a Operation class or string

Returns
True if supplied operation is supported

Return type
bool

var(observable, shot_range=None, bin_size=None)
Returns the variance of observable on specified wires.

Note: all arguments support _lists_, which indicate a tensor product of observables.

Parameters

• observable (str or list[str]) – name of the observable(s)

• wires (Wires) – wires the observable(s) is to be measured on

• par (tuple or list[tuple]]) – parameters for the observable(s)

Raises
NotImplementedError – if the device does not support variance computation

Returns
variance var(𝐴) = 𝜓𝐴2𝜓 − 𝜓𝐴𝜓2

Return type
float

vn_entropy(wires, log_base)
Returns the Von Neumann entropy prior to measurement.

𝑆(𝜌) = −Tr(𝜌 log(𝜌))

Parameters

• wires (Wires) – Wires of the considered subsystem.

• log_base (float) – Base for the logarithm, default is None the natural logarithm is used
in this case.

Returns
returns the Von Neumann entropy

Return type
float

66 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

BraketLocalAhsDevice

class BraketLocalAhsDevice(wires: int | Iterable, *, shots: int | Shots = Shots.DEFAULT)
Bases: BraketAhsDevice

Amazon Braket LocalSimulator AHS device for PennyLane.

Runs programs on Braket’s local AHS simulator. Can be used to emulate the BraketAwsAhsDevice.

Parameters

• wires (int or Iterable[int, str]) – Number of subsystems represented by the de-
vice, or iterable that contains unique labels for the subsystems as numbers (i.e., [-1, 0,
2]) or strings (['ancilla', 'q1', 'q2']).

• shots (int or Shots.DEFAULT) – Number of executions to run to aquire measurements.
Default: Shots.DEFAULT

Note: It is important to keep track of units when specifying electromagnetic pulses for hardware control. The
frequency and amplitude provided in PennyLane for Rydberg atom systems are expected to be in units of MHz,
time in microseconds, phase in radians, and distance in micrometers. All of these will be converted to SI units
internally as needed for upload to the hardware, and frequency will be converted to angular frequency (multiplied
by 2𝜋).

When reading hardware specifications from the Braket backend, bear in mind that all units are SI and frequencies
are in rad/s. This conversion is done when creating a pulse program for upload, and units in the PennyLane
functions should follow the conventions specified in the PennyLane docs to ensure correct unit conversion. See
rydberg_interaction and rydberg_drive in Pennylane for specification of expected input units, and examples for
creating hardware compatible ParametrizedEvolution operators in PennyLane.

2.7. pennylane-braket 67

https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#braket-simulator-ahs-local
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.rydberg_interaction.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.rydberg_drive.html
https://docs.pennylane.ai/en/stable/code/api/pennylane.pulse.ParametrizedEvolution.html

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

ahs_program

analytic Whether shots is None or not.
author

circuit_hash The hash of the circuit upon the last execution.
measurement_map Mapping used to override the logic of measurement

processes.
name

num_executions Number of times this device is executed by the eval-
uation of QNodes running on this device

obs_queue The observables to be measured and returned.
observables

op_queue The operation queue to be applied.
operations

parameters Mapping from free parameter index to the list of
Operations in the device queue that depend on it.

pennylane_requires

register Register a virtual subclass of an ABC.
result

settings Dictionary of constants set by the hardware.
short_name

shot_vector Returns the shot vector, a sparse representation of the
shot sequence used by the device when evaluating
QNodes.

shots Number of circuit evaluations/random samples used
to estimate expectation values of observables

state Returns the state vector of the circuit prior to mea-
surement.

stopping_condition Returns the stopping condition for the device.
task

version

wire_map Ordered dictionary that defines the map from user-
provided wire labels to the wire labels used on this
device

wires All wires that can be addressed on this device

ahs_program

analytic

Whether shots is None or not. Kept for backwards compatability.

author = 'Xanadu Inc.'

68 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

circuit_hash

The hash of the circuit upon the last execution.

This can be used by devices in apply() for parametric compilation.

measurement_map = {}

Mapping used to override the logic of measurement processes. The dictionary maps a measurement class
to a string containing the name of a device’s method that overrides the measurement process. The method
defined by the device should have the following arguments:

• measurement (MeasurementProcess): measurement to override

• shot_range (tuple[int]): 2-tuple of integers specifying the range of samples
to use. If not specified, all samples are used.

• bin_size (int): Divides the shot range into bins of size bin_size, and
returns the measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

Note: When overriding the logic of a MeasurementTransform, the method defined by the device should
only have a single argument:

• tape: quantum tape to transform

Example:

Let’s create a device that inherits from DefaultQubitLegacy and overrides the logic of the qml.sample
measurement. To do so we will need to update the measurement_map dictionary:

class NewDevice(DefaultQubitLegacy):
def __init__(self, wires, shots):

super().__init__(wires=wires, shots=shots)
self.measurement_map[SampleMP] = "sample_measurement"

def sample_measurement(self, measurement, shot_range=None, bin_size=None):
return 2

>>> dev = NewDevice(wires=2, shots=1000)
>>> @qml.qnode(dev)
... def circuit():
... return qml.sample()
>>> circuit()
tensor(2, requires_grad=True)

name = 'Braket LocalSimulator for AHS in PennyLane'

num_executions

Number of times this device is executed by the evaluation of QNodes running on this device

Returns
number of executions

Return type
int

2.7. pennylane-braket 69

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

obs_queue

The observables to be measured and returned.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
list[~.operation.Observable]

observables = {'Hadamard', 'Hermitian', 'Identity', 'PauliX', 'PauliY', 'PauliZ',
'Prod', 'Projector', 'Sprod', 'Sum'}

op_queue

The operation queue to be applied.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
list[~.operation.Operation]

operations = {'ParametrizedEvolution'}

parameters

Mapping from free parameter index to the list of Operations in the device queue that depend on it.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
the mapping

Return type
dict[int->list[ParameterDependency]]

pennylane_requires = '>=0.30.0'

register

result

settings

Dictionary of constants set by the hardware.

Used to enable initializing hardware-consistent Hamiltonians by saving all the values that would need to
be passed, i.e.:

>>> dev_remote = qml.device('braket.aws.ahs', wires=3)
>>> dev_pl = qml.device('default.qubit', wires=3)
>>> settings = dev_remote.settings
>>> H_int = qml.pulse.rydberg.rydberg_interaction(coordinates, **settings)

By passing the settings from the remote device to rydberg_interaction, an H_int Hamiltonian term
is created using the constants specific to the hardware. This is relevant for simulating the remote device in
PennyLane on the default.qubit device.

70 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

short_name = 'braket.local.ahs'

shot_vector

Returns the shot vector, a sparse representation of the shot sequence used by the device when evaluating
QNodes.

Example

>>> dev = qml.device("default.qubit.legacy", wires=2, shots=[3, 1, 2, 2, 2, 2,␣
→˓6, 1, 1, 5, 12, 10, 10])
>>> dev.shots
57
>>> dev.shot_vector
[ShotCopies(3 shots x 1),
ShotCopies(1 shots x 1),
ShotCopies(2 shots x 4),
ShotCopies(6 shots x 1),
ShotCopies(1 shots x 2),
ShotCopies(5 shots x 1),
ShotCopies(12 shots x 1),
ShotCopies(10 shots x 2)]

The sparse representation of the shot sequence is returned, where tuples indicate the number of times a shot
integer is repeated.

Type
list[ShotCopies]

shots

Number of circuit evaluations/random samples used to estimate expectation values of observables

state

Returns the state vector of the circuit prior to measurement.

Note: Only state vector simulators support this property. Please see the plugin documentation for more
details.

stopping_condition

Returns the stopping condition for the device. The returned function accepts a queuable object (including
a PennyLane operation and observable) and returns True if supported by the device.

Type
.BooleanFn

task

version = '0.34.0'

wire_map

Ordered dictionary that defines the map from user-provided wire labels to the wire labels used on this device

wires

All wires that can be addressed on this device

2.7. pennylane-braket 71

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

access_state([wires]) Check that the device has access to an internal state
and return it if available.

active_wires(operators) Returns the wires acted on by a set of operators.
adjoint_jacobian(tape[, starting_state, ...]) Implements the adjoint method outlined in Jones and

Gacon to differentiate an input tape.
analytic_probability([wires]) Return the (marginal) probability of each computa-

tional basis state from the last run of the device.
apply(operations, **kwargs) Convert the pulse operation to an AHS program and

run on the connected device
batch_execute(circuits) Execute a batch of quantum circuits on the device.
batch_transform(circuit) Apply a differentiable batch transform for preprocess-

ing a circuit prior to execution.
capabilities() Get the capabilities of this device class.
check_validity(queue, observables) Checks whether the operations and observables in

queue are all supported by the device.
classical_shadow(obs, circuit) Returns the measured bits and recipes in the classical

shadow protocol.
create_ahs_program(evolution) Create AHS program for upload to hardware from a

ParametrizedEvolution
custom_expand(fn) Register a custom expansion function for the device.
default_expand_fn(circuit[, max_expansion]) Method for expanding or decomposing an input cir-

cuit.
define_wire_map(wires) Create the map from user-provided wire labels to the

wire labels used by the device.
density_matrix(wires) Returns the reduced density matrix over the given

wires.
estimate_probability([wires, shot_range, ...]) Return the estimated probability of each computa-

tional basis state using the generated samples.
execute(circuit, **kwargs) It executes a queue of quantum operations on the de-

vice and then measure the given observables.
execute_and_gradients(circuits[, method]) Execute a batch of quantum circuits on the device,

and return both the results and the gradients.
execution_context() The device execution context used during calls to

execute().
expand_fn(circuit[, max_expansion]) Method for expanding or decomposing an input cir-

cuit.
expval(observable[, shot_range, bin_size]) Returns the expectation value of observable on spec-

ified wires.
generate_basis_states(num_wires[, dtype]) Generates basis states in binary representation ac-

cording to the number of wires specified.
generate_samples() Returns the computational basis samples measured

for all wires.
gradients(circuits[, method]) Return the gradients of a batch of quantum circuits on

the device.
map_wires(wires) Map the wire labels of wires using this device's wire

map.
marginal_prob(prob[, wires]) Return the marginal probability of the computational

basis states by summing the probabiliites on the non-
specified wires.

mutual_info(wires0, wires1, log_base) Returns the mutual information prior to measure-
ment:

continues on next page

72 Chapter 2. Tutorials

https://arxiv.org/abs/2009.02823
https://arxiv.org/abs/2009.02823

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Table 3 – continued from previous page
order_wires(subset_wires) Given some subset of device wires return a Wires ob-

ject with the same wires; sorted according to the de-
vice wire map.

post_apply() Called during execute() after the individual opera-
tions have been executed.

post_measure() Called during execute() after the individual ob-
servables have been measured.

pre_apply() Called during execute() before the individual oper-
ations are executed.

pre_measure() Called during execute() before the individual ob-
servables are measured.

probability([wires, shot_range, bin_size]) Return either the analytic probability or estimated
probability of each computational basis state.

reset() Reset the backend state.
sample(observable[, shot_range, bin_size, ...]) Return samples of an observable.
sample_basis_states(number_of_states, ...) Sample from the computational basis states based on

the state probability.
shadow_expval(obs, circuit) Compute expectation values using classical shadows

in a differentiable manner.
shot_vec_statistics(circuit) Process measurement results from circuit execution

using a device with a shot vector and return statistics.
states_to_binary(samples, num_wires[, dtype]) Convert basis states from base 10 to binary represen-

tation.
statistics(circuit[, shot_range, bin_size]) Process measurement results from circuit execution

and return statistics.
supports_observable(observable) Checks if an observable is supported by this device.

Raises a ValueError,
supports_operation(operation) Checks if an operation is supported by this device.
var(observable[, shot_range, bin_size]) Returns the variance of observable on specified wires.
vn_entropy(wires, log_base) Returns the Von Neumann entropy prior to measure-

ment.

access_state(wires=None)
Check that the device has access to an internal state and return it if available.

Parameters
wires (Wires) – wires of the reduced system

Raises
QuantumFunctionError – if the device is not capable of returning the state

Returns
the state or the density matrix of the device

Return type
array or tensor

static active_wires(operators)
Returns the wires acted on by a set of operators.

Parameters
operators (list[Operation]) – operators for which we are gathering the active wires

Returns
wires activated by the specified operators

2.7. pennylane-braket 73

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
Wires

adjoint_jacobian(tape: QuantumTape, starting_state=None, use_device_state=False)
Implements the adjoint method outlined in Jones and Gacon to differentiate an input tape.

After a forward pass, the circuit is reversed by iteratively applying adjoint gates to scan backwards through
the circuit.

Note: The adjoint differentiation method has the following restrictions:

• As it requires knowledge of the statevector, only statevector simulator devices can be used.

• Only expectation values are supported as measurements.

• Does not work for parametrized observables like Hamiltonian or Hermitian.

Parameters
tape (.QuantumTape) – circuit that the function takes the gradient of

Keyword Arguments

• starting_state (tensor_like) – post-forward pass state to start execution with. It
should be complex-valued. Takes precedence over use_device_state.

• use_device_state (bool) – use current device state to initialize. A forward pass of the
same circuit should be the last thing the device has executed. If a starting_state is
provided, that takes precedence.

Returns
the derivative of the tape with respect to trainable parameters. Dimensions are
(len(observables), len(trainable_params)).

Return type
array or tuple[array]

Raises
QuantumFunctionError – if the input tape has measurements that are not expectation values
or contains a multi-parameter operation aside from Rot

analytic_probability(wires=None)
Return the (marginal) probability of each computational basis state from the last run of the device.

PennyLane uses the convention |𝑞0, 𝑞1, . . . , 𝑞𝑁−1⟩ where 𝑞0 is the most significant bit.

If no wires are specified, then all the basis states representable by the device are considered and no marginal-
ization takes place.

Note: marginal_prob() may be used as a utility method to calculate the marginal probability distribu-
tion.

Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
list of the probabilities

74 Chapter 2. Tutorials

https://arxiv.org/abs/2009.02823

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
array[float]

apply(operations: list[ParametrizedEvolution], **kwargs)
Convert the pulse operation to an AHS program and run on the connected device

Parameters
operations (list[ParametrizedEvolution]) – a list containing a single
ParametrizedEvolution operator

batch_execute(circuits)
Execute a batch of quantum circuits on the device.

The circuits are represented by tapes, and they are executed one-by-one using the device’s executemethod.
The results are collected in a list.

For plugin developers: This function should be overwritten if the device can efficiently run multiple circuits
on a backend, for example using parallel and/or asynchronous executions.

Parameters
circuits (list[QuantumTape]) – circuits to execute on the device

Returns
list of measured value(s)

Return type
list[array[float]]

batch_transform(circuit: QuantumTape)
Apply a differentiable batch transform for preprocessing a circuit prior to execution. This method is called
directly by the QNode, and should be overwritten if the device requires a transform that generates multiple
circuits prior to execution.

By default, this method contains logic for generating multiple circuits, one per term, of a circuit that ter-
minates in expval(H), if the underlying device does not support Hamiltonian expectation values, or if the
device requires finite shots.

Warning: This method will be tracked by autodifferentiation libraries, such as Autograd, JAX, Tensor-
Flow, and Torch. Please make sure to use qml.math for autodiff-agnostic tensor processing if required.

Parameters
circuit (.QuantumTape) – the circuit to preprocess

Returns
Returns a tuple containing the sequence of circuits to be executed, and a post-processing
function to be applied to the list of evaluated circuit results.

Return type
tuple[Sequence[.QuantumTape], callable]

classmethod capabilities()

Get the capabilities of this device class.

Inheriting classes that change or add capabilities must override this method, for example via

2.7. pennylane-braket 75

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

@classmethod
def capabilities(cls):

capabilities = super().capabilities().copy()
capabilities.update(

supports_a_new_capability=True,
)
return capabilities

Returns
results

Return type
dict[str->*]

check_validity(queue, observables)
Checks whether the operations and observables in queue are all supported by the device.

Parameters

• queue (Iterable[Operation]) – quantum operation objects which are intended to be
applied on the device

• observables (Iterable[Observable]) – observables which are intended to be evalu-
ated on the device

Raises
Exception – if there are operations in the queue or observables that the device does not
support

classical_shadow(obs, circuit)
Returns the measured bits and recipes in the classical shadow protocol.

The protocol is described in detail in the classical shadows paper. This measurement process returns the
randomized Pauli measurements (the recipes) that are performed for each qubit and snapshot as an integer:

• 0 for Pauli X,

• 1 for Pauli Y, and

• 2 for Pauli Z.

It also returns the measurement results (the bits); 0 if the 1 eigenvalue is sampled, and 1 if the -1 eigenvalue
is sampled.

The device shots are used to specify the number of snapshots. If T is the number of shots and n is the
number of qubits, then both the measured bits and the Pauli measurements have shape (T, n).

This implementation is device-agnostic and works by executing single-shot tapes containing randomized
Pauli observables. Devices should override this if they can offer cleaner or faster implementations.

See also:

classical_shadow()

Parameters

• obs (ClassicalShadowMP) – The classical shadow measurement process

• circuit (QuantumTape) – The quantum tape that is being executed

76 Chapter 2. Tutorials

https://arxiv.org/abs/2002.08953

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
A tensor with shape (2, T, n), where the first row represents the measured bits and the
second represents the recipes used.

Return type
tensor_like[int]

create_ahs_program(evolution: ParametrizedEvolution)
Create AHS program for upload to hardware from a ParametrizedEvolution

Parameters
evolution (ParametrizedEvolution) – the PennyLane operator describing the pulse to
be converted into an AnalogHamiltonianSimulation program

Returns

a program containing the register and drive
information for running an AHS task on simulation or hardware

Return type
AnalogHamiltonianSimulation

custom_expand(fn)
Register a custom expansion function for the device.

Example

dev = qml.device("default.qubit.legacy", wires=2)

@dev.custom_expand
def my_expansion_function(self, tape, max_expansion=10):

...
can optionally call the default device expansion
tape = self.default_expand_fn(tape, max_expansion=max_expansion)
return tape

The custom device expansion function must have arguments self (the device object), tape (the input cir-
cuit to transform and execute), and max_expansion (the number of times the circuit should be expanded).

The default default_expand_fn() method of the original device may be called. It is highly recom-
mended to call this before returning, to ensure that the expanded circuit is supported on the device.

default_expand_fn(circuit, max_expansion=10)
Method for expanding or decomposing an input circuit. This method should be overwritten if custom
expansion logic is required.

By default, this method expands the tape if:

• state preparation operations are called mid-circuit,

• nested tapes are present,

• any operations are not supported on the device, or

• multiple observables are measured on the same wire.

Parameters

• circuit (.QuantumTape) – the circuit to expand.

2.7. pennylane-braket 77

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• max_expansion (int) – The number of times the circuit should be expanded. Expansion
occurs when an operation or measurement is not supported, and results in a gate decompo-
sition. If any operations in the decomposition remain unsupported by the device, another
expansion occurs.

Returns
The expanded/decomposed circuit, such that the device will natively support all operations.

Return type
.QuantumTape

define_wire_map(wires)
Create the map from user-provided wire labels to the wire labels used by the device.

The default wire map maps the user wire labels to wire labels that are consecutive integers.

However, by overwriting this function, devices can specify their preferred, non-consecutive and/or non-
integer wire labels.

Parameters
wires (Wires) – user-provided wires for this device

Returns
dictionary specifying the wire map

Return type
OrderedDict

Example

>>> dev = device('my.device', wires=['b', 'a'])
>>> dev.wire_map()
OrderedDict([(<Wires = ['a']>, <Wires = [0]>), (<Wires = ['b']>, <Wires = [1]>
→˓)])

density_matrix(wires)
Returns the reduced density matrix over the given wires.

Parameters
wires (Wires) – wires of the reduced system

Returns
complex array of shape (2 ** len(wires), 2 ** len(wires)) representing the re-
duced density matrix of the state prior to measurement.

Return type
array[complex]

estimate_probability(wires=None, shot_range=None, bin_size=None)
Return the estimated probability of each computational basis state using the generated samples.

Parameters

• wires (Iterable[Number, str], Number, str, Wires) – wires to calculate
marginal probabilities for. Wires not provided are traced out of the system.

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

78 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
list of the probabilities

Return type
array[float]

execute(circuit, **kwargs)
It executes a queue of quantum operations on the device and then measure the given observables.

For plugin developers: instead of overwriting this, consider implementing a suitable subset of

• apply()

• generate_samples()

• probability()

Additional keyword arguments may be passed to this method that can be utilised by apply(). An example
would be passing the QNode hash that can be used later for parametric compilation.

Parameters
circuit (QuantumTape) – circuit to execute on the device

Raises
QuantumFunctionError – if the value of return_type is not supported

Returns
measured value(s)

Return type
array[float]

execute_and_gradients(circuits, method='jacobian', **kwargs)
Execute a batch of quantum circuits on the device, and return both the results and the gradients.

The circuits are represented by tapes, and they are executed one-by-one using the device’s executemethod.
The results and the corresponding Jacobians are collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently run multiple circuits
on a backend, for example using parallel and/or asynchronous executions, and return both the results and
the Jacobians.

Parameters

• circuits (list[.tape.QuantumTape]) – circuits to execute on the device

• method (str) – the device method to call to compute the Jacobian of a single circuit

• **kwargs – keyword argument to pass when calling method

Returns
Tuple containing list of measured value(s) and list of Jacobians. Returned Jacobians should
be of shape (output_shape, num_params).

Return type
tuple[list[array[float]], list[array[float]]]

execution_context()

The device execution context used during calls to execute().

You can overwrite this function to return a context manager in case your quantum library requires that; all
operations and method calls (including apply() and expval()) are then evaluated within the context of
this context manager (see the source of execute() for more details).

2.7. pennylane-braket 79

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

expand_fn(circuit, max_expansion=10)
Method for expanding or decomposing an input circuit. Can be the default or a custom expansion method,
see Device.default_expand_fn() and Device.custom_expand() for more details.

Parameters

• circuit (.QuantumTape) – the circuit to expand.

• max_expansion (int) – The number of times the circuit should be expanded. Expansion
occurs when an operation or measurement is not supported, and results in a gate decompo-
sition. If any operations in the decomposition remain unsupported by the device, another
expansion occurs.

Returns
The expanded/decomposed circuit, such that the device will natively support all operations.

Return type
.QuantumTape

expval(observable, shot_range=None, bin_size=None)
Returns the expectation value of observable on specified wires.

Note: all arguments accept _lists_, which indicate a tensor product of observables.

Parameters

• observable (str or list[str]) – name of the observable(s)

• wires (Wires) – wires the observable(s) are to be measured on

• par (tuple or list[tuple]]) – parameters for the observable(s)

Returns
expectation value 𝐴 = 𝜓𝐴𝜓

Return type
float

static generate_basis_states(num_wires, dtype=<class 'numpy.uint32'>)
Generates basis states in binary representation according to the number of wires specified.

The states_to_binary method creates basis states faster (for larger systems at times over x25 times faster)
than the approach using itertools.product, at the expense of using slightly more memory.

Due to the large size of the integer arrays for more than 32 bits, memory allocation errors may arise in the
states_to_binary method. Hence we constraint the dtype of the array to represent unsigned integers on 32
bits. Due to this constraint, an overflow occurs for 32 or more wires, therefore this approach is used only
for fewer wires.

For smaller number of wires speed is comparable to the next approach (using itertools.product), hence
we resort to that one for testing purposes.

Parameters

• num_wires (int) – the number wires

• dtype=np.uint32 (type) – the data type of the arrays to use

Returns
the sampled basis states

Return type
array[int]

80 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

generate_samples()

Returns the computational basis samples measured for all wires.

Returns
array of samples in the shape (dev.shots, dev.num_wires)

Return type
array[complex]

gradients(circuits, method='jacobian', **kwargs)
Return the gradients of a batch of quantum circuits on the device.

The gradient method method is called sequentially for each circuit, and the corresponding Jacobians are
collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently compute the gradient
of multiple circuits on a backend, for example using parallel and/or asynchronous executions.

Parameters

• circuits (list[.tape.QuantumTape]) – circuits to execute on the device

• method (str) – the device method to call to compute the Jacobian of a single circuit

• **kwargs – keyword argument to pass when calling method

Returns
List of Jacobians. Returned Jacobians should be of shape (output_shape, num_params).

Return type
list[array[float]]

map_wires(wires)
Map the wire labels of wires using this device’s wire map.

Parameters
wires (Wires) – wires whose labels we want to map to the device’s internal labelling scheme

Returns
wires with new labels

Return type
Wires

marginal_prob(prob, wires=None)
Return the marginal probability of the computational basis states by summing the probabiliites on the non-
specified wires.

If no wires are specified, then all the basis states representable by the device are considered and no marginal-
ization takes place.

Note: If the provided wires are not in the order as they appear on the device, the returned marginal
probabilities take this permutation into account.

For example, if the addressable wires on this device are Wires([0, 1, 2]) and this function gets passed
wires=[2, 0], then the returned marginal probability vector will take this ‘reversal’ of the two wires into
account:

P(2,0) = [|00⟩, |10⟩, |01⟩, |11⟩]

2.7. pennylane-braket 81

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters

• prob – The probabilities to return the marginal probabilities for

• wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
array of the resulting marginal probabilities.

Return type
array[float]

mutual_info(wires0, wires1, log_base)
Returns the mutual information prior to measurement:

𝐼(𝐴,𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵)− 𝑆(𝜌𝐴𝐵)

where 𝑆 is the von Neumann entropy.

Parameters

• wires0 (Wires) – wires of the first subsystem

• wires1 (Wires) – wires of the second subsystem

• log_base (float) – base to use in the logarithm

Returns
the mutual information

Return type
float

order_wires(subset_wires)
Given some subset of device wires return a Wires object with the same wires; sorted according to the device
wire map.

Parameters
subset_wires (Wires) – The subset of device wires (in any order).

Raises
ValueError – Could not find some or all subset wires subset_wires in device wires de-
vice_wires.

Returns
a new Wires object containing the re-ordered wires set

Return type
ordered_wires (Wires)

post_apply()

Called during execute() after the individual operations have been executed.

post_measure()

Called during execute() after the individual observables have been measured.

pre_apply()

Called during execute() before the individual operations are executed.

pre_measure()

Called during execute() before the individual observables are measured.

82 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

probability(wires=None, shot_range=None, bin_size=None)
Return either the analytic probability or estimated probability of each computational basis state.

Devices that require a finite number of shots always return the estimated probability.

Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
list of the probabilities

Return type
array[float]

reset()

Reset the backend state.

After the reset, the backend should be as if it was just constructed. Most importantly the quantum state is
reset to its initial value.

sample(observable, shot_range=None, bin_size=None, counts=False)
Return samples of an observable.

Parameters

• observable (Observable) – the observable to sample

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

• counts (bool) – whether counts (True) or raw samples (False) should be returned

Raises
EigvalsUndefinedError – if no information is available about the eigenvalues of the ob-
servable

Returns
samples in an array of dimension (shots,) or counts

Return type
Union[array[float], dict, list[dict]]

sample_basis_states(number_of_states, state_probability)
Sample from the computational basis states based on the state probability.

This is an auxiliary method to the generate_samples method.

Parameters

• number_of_states (int) – the number of basis states to sample from

• state_probability (array[float]) – the computational basis probability vector

Returns
the sampled basis states

Return type
array[int]

2.7. pennylane-braket 83

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

shadow_expval(obs, circuit)
Compute expectation values using classical shadows in a differentiable manner.

Please refer to shadow_expval() for detailed documentation.

Parameters

• obs (ClassicalShadowMP) – The classical shadow expectation value measurement pro-
cess

• circuit (QuantumTape) – The quantum tape that is being executed

Returns
expectation value estimate.

Return type
float

shot_vec_statistics(circuit: QuantumTape)
Process measurement results from circuit execution using a device with a shot vector and return statistics.

This is an auxiliary method of execute and uses statistics.

When using shot vectors, measurement results for each item of the shot vector are contained in a tuple.

Parameters
circuit (QuantumTape) – circuit to execute on the device

Raises
QuantumFunctionError – if the value of return_type is not supported

Returns
stastics for each shot item from the shot vector

Return type
tuple

static states_to_binary(samples, num_wires, dtype=<class 'numpy.int64'>)
Convert basis states from base 10 to binary representation.

This is an auxiliary method to the generate_samples method.

Parameters

• samples (array[int]) – samples of basis states in base 10 representation

• num_wires (int) – the number of qubits

• dtype (type) – Type of the internal integer array to be used. Can be important to specify
for large systems for memory allocation purposes.

Returns
basis states in binary representation

Return type
array[int]

statistics(circuit: QuantumTape, shot_range=None, bin_size=None)
Process measurement results from circuit execution and return statistics.

This includes returning expectation values, variance, samples, probabilities, states, and density matrices.

Parameters

• circuit (QuantumTape) – the quantum tape currently being executed

84 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

Raises
QuantumFunctionError – if the value of return_type is not supported

Returns
the corresponding statistics

Return type
Union[float, List[float]]

supports_observable(observable)

Checks if an observable is supported by this device. Raises a ValueError,
if not a subclass or string of an Observable was passed.

Parameters
observable (type or str) – observable to be checked

Raises
ValueError – if observable is not a Observable class or string

Returns
True iff supplied observable is supported

Return type
bool

supports_operation(operation)
Checks if an operation is supported by this device.

Parameters
operation (type or str) – operation to be checked

Raises
ValueError – if operation is not a Operation class or string

Returns
True if supplied operation is supported

Return type
bool

var(observable, shot_range=None, bin_size=None)
Returns the variance of observable on specified wires.

Note: all arguments support _lists_, which indicate a tensor product of observables.

Parameters

• observable (str or list[str]) – name of the observable(s)

• wires (Wires) – wires the observable(s) is to be measured on

• par (tuple or list[tuple]]) – parameters for the observable(s)

Raises
NotImplementedError – if the device does not support variance computation

2.7. pennylane-braket 85

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
variance var(𝐴) = 𝜓𝐴2𝜓 − 𝜓𝐴𝜓2

Return type
float

vn_entropy(wires, log_base)
Returns the Von Neumann entropy prior to measurement.

𝑆(𝜌) = −Tr(𝜌 log(𝜌))

Parameters

• wires (Wires) – Wires of the considered subsystem.

• log_base (float) – Base for the logarithm, default is None the natural logarithm is used
in this case.

Returns
returns the Von Neumann entropy

Return type
float

BraketLocalQubitDevice

class BraketLocalQubitDevice(wires: int | Iterable, backend: str | BraketSimulator = 'default', *, shots: int |
None = None, **run_kwargs)

Bases: BraketQubitDevice

Amazon Braket LocalSimulator qubit device for PennyLane.

Parameters

• wires (int or Iterable[Number, str]]) – Number of subsystems represented by the
device, or iterable that contains unique labels for the subsystems as numbers (i.e., [-1, 0,
2]) or strings (['ancilla', 'q1', 'q2']).

• backend (Union[str, BraketSimulator]) – The name of the simulator backend or the
actual simulator instance to use for simulation. Defaults to the default simulator backend
name.

• shots (int or None) – Number of circuit evaluations or random samples included, to
estimate expectation values of observables. If this value is set to None or 0, then the device
runs in analytic mode (calculations will be exact). Default: None

• **run_kwargs – Variable length keyword arguments for braket.devices.Device.
run().

86 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

analytic Whether shots is None or not.
author

circuit The last circuit run on this device.
circuit_hash The hash of the circuit upon the last execution.
measurement_map Mapping used to override the logic of measurement

processes.
name

num_executions Number of times this device is executed by the eval-
uation of QNodes running on this device

obs_queue The observables to be measured and returned.
observables set() -> new empty set object set(iterable) -> new set

object
op_queue The operation queue to be applied.
operations The set of names of PennyLane operations that the

device supports.
parameters Mapping from free parameter index to the list of

Operations in the device queue that depend on it.
pennylane_requires

short_name

shot_vector Returns the shot vector, a sparse representation of the
shot sequence used by the device when evaluating
QNodes.

shots Number of circuit evaluations/random samples used
to estimate expectation values of observables

state Returns the state vector of the circuit prior to mea-
surement.

stopping_condition Returns the stopping condition for the device.
task The task corresponding to the last run circuit.
version

wire_map Ordered dictionary that defines the map from user-
provided wire labels to the wire labels used on this
device

wires All wires that can be addressed on this device

analytic

Whether shots is None or not. Kept for backwards compatability.

author = 'Amazon Web Services'

circuit

The last circuit run on this device.

Type
Circuit

circuit_hash

The hash of the circuit upon the last execution.

This can be used by devices in apply() for parametric compilation.

2.7. pennylane-braket 87

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

measurement_map = {}

Mapping used to override the logic of measurement processes. The dictionary maps a measurement class
to a string containing the name of a device’s method that overrides the measurement process. The method
defined by the device should have the following arguments:

• measurement (MeasurementProcess): measurement to override

• shot_range (tuple[int]): 2-tuple of integers specifying the range of samples
to use. If not specified, all samples are used.

• bin_size (int): Divides the shot range into bins of size bin_size, and
returns the measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

Note: When overriding the logic of a MeasurementTransform, the method defined by the device should
only have a single argument:

• tape: quantum tape to transform

Example:

Let’s create a device that inherits from DefaultQubitLegacy and overrides the logic of the qml.sample
measurement. To do so we will need to update the measurement_map dictionary:

class NewDevice(DefaultQubitLegacy):
def __init__(self, wires, shots):

super().__init__(wires=wires, shots=shots)
self.measurement_map[SampleMP] = "sample_measurement"

def sample_measurement(self, measurement, shot_range=None, bin_size=None):
return 2

>>> dev = NewDevice(wires=2, shots=1000)
>>> @qml.qnode(dev)
... def circuit():
... return qml.sample()
>>> circuit()
tensor(2, requires_grad=True)

name = 'Braket LocalSimulator for PennyLane'

num_executions

Number of times this device is executed by the evaluation of QNodes running on this device

Returns
number of executions

Return type
int

obs_queue

The observables to be measured and returned.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

88 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
list[~.operation.Observable]

observables

op_queue

The operation queue to be applied.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
list[~.operation.Operation]

operations

The set of names of PennyLane operations that the device supports.

Type
frozenset[str]

parameters

Mapping from free parameter index to the list of Operations in the device queue that depend on it.

Note that this property can only be accessed within the execution context of execute().

Raises
ValueError – if outside of the execution context

Returns
the mapping

Return type
dict[int->list[ParameterDependency]]

pennylane_requires = '>=0.30.0'

short_name = 'braket.local.qubit'

shot_vector

Returns the shot vector, a sparse representation of the shot sequence used by the device when evaluating
QNodes.

Example

>>> dev = qml.device("default.qubit.legacy", wires=2, shots=[3, 1, 2, 2, 2, 2,␣
→˓6, 1, 1, 5, 12, 10, 10])
>>> dev.shots
57
>>> dev.shot_vector
[ShotCopies(3 shots x 1),
ShotCopies(1 shots x 1),
ShotCopies(2 shots x 4),
ShotCopies(6 shots x 1),
ShotCopies(1 shots x 2),
ShotCopies(5 shots x 1),
ShotCopies(12 shots x 1),
ShotCopies(10 shots x 2)]

2.7. pennylane-braket 89

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

The sparse representation of the shot sequence is returned, where tuples indicate the number of times a shot
integer is repeated.

Type
list[ShotCopies]

shots

Number of circuit evaluations/random samples used to estimate expectation values of observables

state

Returns the state vector of the circuit prior to measurement.

Note: Only state vector simulators support this property. Please see the plugin documentation for more
details.

stopping_condition

Returns the stopping condition for the device. The returned function accepts a queuable object (including
a PennyLane operation and observable) and returns True if supported by the device.

Type
.BooleanFn

task

The task corresponding to the last run circuit.

Type
QuantumTask

version = '1.24.2'

wire_map

Ordered dictionary that defines the map from user-provided wire labels to the wire labels used on this device

wires

All wires that can be addressed on this device

access_state([wires]) Check that the device has access to an internal state
and return it if available.

active_wires(operators) Returns the wires acted on by a set of operators.
adjoint_jacobian(tape[, starting_state, ...]) Implements the adjoint method outlined in Jones and

Gacon to differentiate an input tape.
analytic_probability([wires]) Return the (marginal) probability of each computa-

tional basis state from the last run of the device.
apply(operations[, rotations, ...]) Instantiate Braket Circuit object.
batch_execute(circuits) Execute a batch of quantum circuits on the device.
batch_transform(circuit) Apply a differentiable batch transform for preprocess-

ing a circuit prior to execution.
capabilities() Get the capabilities of this device class.
check_validity(queue, observables) Checks whether the operations and observables in

queue are all supported by the device.
classical_shadow(obs, circuit) Returns the measured bits and recipes in the classical

shadow protocol.
custom_expand(fn) Register a custom expansion function for the device.

continues on next page

90 Chapter 2. Tutorials

https://arxiv.org/abs/2009.02823
https://arxiv.org/abs/2009.02823

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Table 4 – continued from previous page
default_expand_fn(circuit[, max_expansion]) Method for expanding or decomposing an input cir-

cuit.
define_wire_map(wires) Create the map from user-provided wire labels to the

wire labels used by the device.
density_matrix(wires) Returns the reduced density matrix over the given

wires.
estimate_probability([wires, shot_range, ...]) Return the estimated probability of each computa-

tional basis state using the generated samples.
execute(circuit[, compute_gradient]) It executes a queue of quantum operations on the de-

vice and then measure the given observables.
execute_and_gradients(circuits[, method]) Execute a batch of quantum circuits on the device,

and return both the results and the gradients.
execution_context() The device execution context used during calls to

execute().
expand_fn(circuit[, max_expansion]) Method for expanding or decomposing an input cir-

cuit.
expval(observable[, shot_range, bin_size]) Returns the expectation value of observable on spec-

ified wires.
generate_basis_states(num_wires[, dtype]) Generates basis states in binary representation ac-

cording to the number of wires specified.
generate_samples() Returns the computational basis samples generated

for all wires.
gradients(circuits[, method]) Return the gradients of a batch of quantum circuits on

the device.
map_wires(wires) Map the wire labels of wires using this device's wire

map.
marginal_prob(prob[, wires]) Return the marginal probability of the computational

basis states by summing the probabiliites on the non-
specified wires.

mutual_info(wires0, wires1, log_base) Returns the mutual information prior to measure-
ment:

order_wires(subset_wires) Given some subset of device wires return a Wires ob-
ject with the same wires; sorted according to the de-
vice wire map.

post_apply() Called during execute() after the individual opera-
tions have been executed.

post_measure() Called during execute() after the individual ob-
servables have been measured.

pre_apply() Called during execute() before the individual oper-
ations are executed.

pre_measure() Called during execute() before the individual ob-
servables are measured.

probability([wires, shot_range, bin_size]) Return either the analytic probability or estimated
probability of each computational basis state.

reset() Reset the backend state.
sample(observable[, shot_range, bin_size, ...]) Return samples of an observable.
sample_basis_states(number_of_states, ...) Sample from the computational basis states based on

the state probability.
shadow_expval(obs, circuit) Compute expectation values using classical shadows

in a differentiable manner.
shot_vec_statistics(circuit) Process measurement results from circuit execution

using a device with a shot vector and return statistics.
continues on next page

2.7. pennylane-braket 91

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Table 4 – continued from previous page
states_to_binary(samples, num_wires[, dtype]) Convert basis states from base 10 to binary represen-

tation.
statistics(braket_result, measurements) Processes measurement results from a Braket task re-

sult and returns statistics.
supports_observable(observable) Checks if an observable is supported by this device.

Raises a ValueError,
supports_operation(operation) Checks if an operation is supported by this device.
var(observable[, shot_range, bin_size]) Returns the variance of observable on specified wires.
vn_entropy(wires, log_base) Returns the Von Neumann entropy prior to measure-

ment.

access_state(wires=None)
Check that the device has access to an internal state and return it if available.

Parameters
wires (Wires) – wires of the reduced system

Raises
QuantumFunctionError – if the device is not capable of returning the state

Returns
the state or the density matrix of the device

Return type
array or tensor

static active_wires(operators)
Returns the wires acted on by a set of operators.

Parameters
operators (list[Operation]) – operators for which we are gathering the active wires

Returns
wires activated by the specified operators

Return type
Wires

adjoint_jacobian(tape: QuantumTape, starting_state=None, use_device_state=False)
Implements the adjoint method outlined in Jones and Gacon to differentiate an input tape.

After a forward pass, the circuit is reversed by iteratively applying adjoint gates to scan backwards through
the circuit.

Note: The adjoint differentiation method has the following restrictions:

• As it requires knowledge of the statevector, only statevector simulator devices can be used.

• Only expectation values are supported as measurements.

• Does not work for parametrized observables like Hamiltonian or Hermitian.

Parameters
tape (.QuantumTape) – circuit that the function takes the gradient of

Keyword Arguments

92 Chapter 2. Tutorials

https://arxiv.org/abs/2009.02823

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• starting_state (tensor_like) – post-forward pass state to start execution with. It
should be complex-valued. Takes precedence over use_device_state.

• use_device_state (bool) – use current device state to initialize. A forward pass of the
same circuit should be the last thing the device has executed. If a starting_state is
provided, that takes precedence.

Returns
the derivative of the tape with respect to trainable parameters. Dimensions are
(len(observables), len(trainable_params)).

Return type
array or tuple[array]

Raises
QuantumFunctionError – if the input tape has measurements that are not expectation values
or contains a multi-parameter operation aside from Rot

analytic_probability(wires=None)
Return the (marginal) probability of each computational basis state from the last run of the device.

PennyLane uses the convention |𝑞0, 𝑞1, . . . , 𝑞𝑁−1⟩ where 𝑞0 is the most significant bit.

If no wires are specified, then all the basis states representable by the device are considered and no marginal-
ization takes place.

Note: marginal_prob() may be used as a utility method to calculate the marginal probability distribu-
tion.

Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
list of the probabilities

Return type
array[float]

apply(operations: Sequence[Operation], rotations: Sequence[Operation] | None = None,
use_unique_params: bool = False, *, trainable_indices: frozenset[int] | None = None, **run_kwargs)
→ Circuit

Instantiate Braket Circuit object.

batch_execute(circuits)
Execute a batch of quantum circuits on the device.

The circuits are represented by tapes, and they are executed one-by-one using the device’s executemethod.
The results are collected in a list.

For plugin developers: This function should be overwritten if the device can efficiently run multiple circuits
on a backend, for example using parallel and/or asynchronous executions.

Parameters
circuits (list[QuantumTape]) – circuits to execute on the device

Returns
list of measured value(s)

2.7. pennylane-braket 93

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
list[array[float]]

batch_transform(circuit: QuantumTape)
Apply a differentiable batch transform for preprocessing a circuit prior to execution. This method is called
directly by the QNode, and should be overwritten if the device requires a transform that generates multiple
circuits prior to execution.

By default, this method contains logic for generating multiple circuits, one per term, of a circuit that ter-
minates in expval(H), if the underlying device does not support Hamiltonian expectation values, or if the
device requires finite shots.

Warning: This method will be tracked by autodifferentiation libraries, such as Autograd, JAX, Tensor-
Flow, and Torch. Please make sure to use qml.math for autodiff-agnostic tensor processing if required.

Parameters
circuit (.QuantumTape) – the circuit to preprocess

Returns
Returns a tuple containing the sequence of circuits to be executed, and a post-processing
function to be applied to the list of evaluated circuit results.

Return type
tuple[Sequence[.QuantumTape], callable]

classmethod capabilities()

Get the capabilities of this device class.

Inheriting classes that change or add capabilities must override this method, for example via

@classmethod
def capabilities(cls):

capabilities = super().capabilities().copy()
capabilities.update(

supports_a_new_capability=True,
)
return capabilities

Returns
results

Return type
dict[str->*]

check_validity(queue, observables)
Checks whether the operations and observables in queue are all supported by the device.

Parameters

• queue (Iterable[Operation]) – quantum operation objects which are intended to be
applied on the device

• observables (Iterable[Observable]) – observables which are intended to be evalu-
ated on the device

94 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Raises
DeviceError – if there are operations in the queue or observables that the device does not
support

classical_shadow(obs, circuit)
Returns the measured bits and recipes in the classical shadow protocol.

The protocol is described in detail in the classical shadows paper. This measurement process returns the
randomized Pauli measurements (the recipes) that are performed for each qubit and snapshot as an integer:

• 0 for Pauli X,

• 1 for Pauli Y, and

• 2 for Pauli Z.

It also returns the measurement results (the bits); 0 if the 1 eigenvalue is sampled, and 1 if the -1 eigenvalue
is sampled.

The device shots are used to specify the number of snapshots. If T is the number of shots and n is the
number of qubits, then both the measured bits and the Pauli measurements have shape (T, n).

This implementation is device-agnostic and works by executing single-shot tapes containing randomized
Pauli observables. Devices should override this if they can offer cleaner or faster implementations.

See also:

classical_shadow()

Parameters

• obs (ClassicalShadowMP) – The classical shadow measurement process

• circuit (QuantumTape) – The quantum tape that is being executed

Returns
A tensor with shape (2, T, n), where the first row represents the measured bits and the
second represents the recipes used.

Return type
tensor_like[int]

custom_expand(fn)
Register a custom expansion function for the device.

Example

dev = qml.device("default.qubit.legacy", wires=2)

@dev.custom_expand
def my_expansion_function(self, tape, max_expansion=10):

...
can optionally call the default device expansion
tape = self.default_expand_fn(tape, max_expansion=max_expansion)
return tape

The custom device expansion function must have arguments self (the device object), tape (the input cir-
cuit to transform and execute), and max_expansion (the number of times the circuit should be expanded).

The default default_expand_fn() method of the original device may be called. It is highly recom-
mended to call this before returning, to ensure that the expanded circuit is supported on the device.

2.7. pennylane-braket 95

https://arxiv.org/abs/2002.08953

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

default_expand_fn(circuit, max_expansion=10)
Method for expanding or decomposing an input circuit. This method should be overwritten if custom
expansion logic is required.

By default, this method expands the tape if:

• state preparation operations are called mid-circuit,

• nested tapes are present,

• any operations are not supported on the device, or

• multiple observables are measured on the same wire.

Parameters

• circuit (.QuantumTape) – the circuit to expand.

• max_expansion (int) – The number of times the circuit should be expanded. Expansion
occurs when an operation or measurement is not supported, and results in a gate decompo-
sition. If any operations in the decomposition remain unsupported by the device, another
expansion occurs.

Returns
The expanded/decomposed circuit, such that the device will natively support all operations.

Return type
.QuantumTape

define_wire_map(wires)
Create the map from user-provided wire labels to the wire labels used by the device.

The default wire map maps the user wire labels to wire labels that are consecutive integers.

However, by overwriting this function, devices can specify their preferred, non-consecutive and/or non-
integer wire labels.

Parameters
wires (Wires) – user-provided wires for this device

Returns
dictionary specifying the wire map

Return type
OrderedDict

Example

>>> dev = device('my.device', wires=['b', 'a'])
>>> dev.wire_map()
OrderedDict([(<Wires = ['a']>, <Wires = [0]>), (<Wires = ['b']>, <Wires = [1]>
→˓)])

density_matrix(wires)
Returns the reduced density matrix over the given wires.

Parameters
wires (Wires) – wires of the reduced system

Returns
complex array of shape (2 ** len(wires), 2 ** len(wires)) representing the re-
duced density matrix of the state prior to measurement.

96 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
array[complex]

estimate_probability(wires=None, shot_range=None, bin_size=None)
Return the estimated probability of each computational basis state using the generated samples.

Parameters

• wires (Iterable[Number, str], Number, str, Wires) – wires to calculate
marginal probabilities for. Wires not provided are traced out of the system.

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

Returns
list of the probabilities

Return type
array[float]

execute(circuit: QuantumTape, compute_gradient=False, **run_kwargs)→ ndarray
It executes a queue of quantum operations on the device and then measure the given observables.

For plugin developers: instead of overwriting this, consider implementing a suitable subset of

• apply()

• generate_samples()

• probability()

Additional keyword arguments may be passed to this method that can be utilised by apply(). An example
would be passing the QNode hash that can be used later for parametric compilation.

Parameters
circuit (QuantumTape) – circuit to execute on the device

Raises
QuantumFunctionError – if the value of return_type is not supported

Returns
measured value(s)

Return type
array[float]

execute_and_gradients(circuits, method='jacobian', **kwargs)
Execute a batch of quantum circuits on the device, and return both the results and the gradients.

The circuits are represented by tapes, and they are executed one-by-one using the device’s executemethod.
The results and the corresponding Jacobians are collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently run multiple circuits
on a backend, for example using parallel and/or asynchronous executions, and return both the results and
the Jacobians.

Parameters

• circuits (list[.tape.QuantumTape]) – circuits to execute on the device

• method (str) – the device method to call to compute the Jacobian of a single circuit

2.7. pennylane-braket 97

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• **kwargs – keyword argument to pass when calling method

Returns
Tuple containing list of measured value(s) and list of Jacobians. Returned Jacobians should
be of shape (output_shape, num_params).

Return type
tuple[list[array[float]], list[array[float]]]

execution_context()

The device execution context used during calls to execute().

You can overwrite this function to return a context manager in case your quantum library requires that; all
operations and method calls (including apply() and expval()) are then evaluated within the context of
this context manager (see the source of execute() for more details).

expand_fn(circuit, max_expansion=10)
Method for expanding or decomposing an input circuit. Can be the default or a custom expansion method,
see Device.default_expand_fn() and Device.custom_expand() for more details.

Parameters

• circuit (.QuantumTape) – the circuit to expand.

• max_expansion (int) – The number of times the circuit should be expanded. Expansion
occurs when an operation or measurement is not supported, and results in a gate decompo-
sition. If any operations in the decomposition remain unsupported by the device, another
expansion occurs.

Returns
The expanded/decomposed circuit, such that the device will natively support all operations.

Return type
.QuantumTape

expval(observable, shot_range=None, bin_size=None)
Returns the expectation value of observable on specified wires.

Note: all arguments accept _lists_, which indicate a tensor product of observables.

Parameters

• observable (str or list[str]) – name of the observable(s)

• wires (Wires) – wires the observable(s) are to be measured on

• par (tuple or list[tuple]]) – parameters for the observable(s)

Returns
expectation value 𝐴 = 𝜓𝐴𝜓

Return type
float

static generate_basis_states(num_wires, dtype=<class 'numpy.uint32'>)
Generates basis states in binary representation according to the number of wires specified.

The states_to_binary method creates basis states faster (for larger systems at times over x25 times faster)
than the approach using itertools.product, at the expense of using slightly more memory.

Due to the large size of the integer arrays for more than 32 bits, memory allocation errors may arise in the
states_to_binary method. Hence we constraint the dtype of the array to represent unsigned integers on 32
bits. Due to this constraint, an overflow occurs for 32 or more wires, therefore this approach is used only
for fewer wires.

98 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

For smaller number of wires speed is comparable to the next approach (using itertools.product), hence
we resort to that one for testing purposes.

Parameters

• num_wires (int) – the number wires

• dtype=np.uint32 (type) – the data type of the arrays to use

Returns
the sampled basis states

Return type
array[int]

generate_samples()

Returns the computational basis samples generated for all wires.

Note that PennyLane uses the convention |𝑞0, 𝑞1, . . . , 𝑞𝑁−1⟩ where 𝑞0 is the most significant bit.

Warning: This method should be overwritten on devices that generate their own computational basis
samples, with the resulting computational basis samples stored as self._samples.

Returns
array of samples in the shape (dev.shots, dev.num_wires)

Return type
array[complex]

gradients(circuits, method='jacobian', **kwargs)
Return the gradients of a batch of quantum circuits on the device.

The gradient method method is called sequentially for each circuit, and the corresponding Jacobians are
collected in a list.

For plugin developers: This method should be overwritten if the device can efficiently compute the gradient
of multiple circuits on a backend, for example using parallel and/or asynchronous executions.

Parameters

• circuits (list[.tape.QuantumTape]) – circuits to execute on the device

• method (str) – the device method to call to compute the Jacobian of a single circuit

• **kwargs – keyword argument to pass when calling method

Returns
List of Jacobians. Returned Jacobians should be of shape (output_shape, num_params).

Return type
list[array[float]]

map_wires(wires)
Map the wire labels of wires using this device’s wire map.

Parameters
wires (Wires) – wires whose labels we want to map to the device’s internal labelling scheme

Returns
wires with new labels

2.7. pennylane-braket 99

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
Wires

marginal_prob(prob, wires=None)
Return the marginal probability of the computational basis states by summing the probabiliites on the non-
specified wires.

If no wires are specified, then all the basis states representable by the device are considered and no marginal-
ization takes place.

Note: If the provided wires are not in the order as they appear on the device, the returned marginal
probabilities take this permutation into account.

For example, if the addressable wires on this device are Wires([0, 1, 2]) and this function gets passed
wires=[2, 0], then the returned marginal probability vector will take this ‘reversal’ of the two wires into
account:

P(2,0) = [|00⟩, |10⟩, |01⟩, |11⟩]

Parameters

• prob – The probabilities to return the marginal probabilities for

• wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
array of the resulting marginal probabilities.

Return type
array[float]

mutual_info(wires0, wires1, log_base)
Returns the mutual information prior to measurement:

𝐼(𝐴,𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵)− 𝑆(𝜌𝐴𝐵)

where 𝑆 is the von Neumann entropy.

Parameters

• wires0 (Wires) – wires of the first subsystem

• wires1 (Wires) – wires of the second subsystem

• log_base (float) – base to use in the logarithm

Returns
the mutual information

Return type
float

order_wires(subset_wires)
Given some subset of device wires return a Wires object with the same wires; sorted according to the device
wire map.

Parameters
subset_wires (Wires) – The subset of device wires (in any order).

100 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Raises
ValueError – Could not find some or all subset wires subset_wires in device wires de-
vice_wires.

Returns
a new Wires object containing the re-ordered wires set

Return type
ordered_wires (Wires)

post_apply()

Called during execute() after the individual operations have been executed.

post_measure()

Called during execute() after the individual observables have been measured.

pre_apply()

Called during execute() before the individual operations are executed.

pre_measure()

Called during execute() before the individual observables are measured.

probability(wires=None, shot_range=None, bin_size=None)
Return either the analytic probability or estimated probability of each computational basis state.

Devices that require a finite number of shots always return the estimated probability.

Parameters
wires (Iterable[Number, str], Number, str, Wires) – wires to return marginal
probabilities for. Wires not provided are traced out of the system.

Returns
list of the probabilities

Return type
array[float]

reset()

Reset the backend state.

After the reset, the backend should be as if it was just constructed. Most importantly the quantum state is
reset to its initial value.

sample(observable, shot_range=None, bin_size=None, counts=False)
Return samples of an observable.

Parameters

• observable (Observable) – the observable to sample

• shot_range (tuple[int]) – 2-tuple of integers specifying the range of samples to use.
If not specified, all samples are used.

• bin_size (int) – Divides the shot range into bins of size bin_size, and returns the
measurement statistic separately over each bin. If not provided, the entire shot range is
treated as a single bin.

• counts (bool) – whether counts (True) or raw samples (False) should be returned

Raises
EigvalsUndefinedError – if no information is available about the eigenvalues of the ob-
servable

2.7. pennylane-braket 101

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
samples in an array of dimension (shots,) or counts

Return type
Union[array[float], dict, list[dict]]

sample_basis_states(number_of_states, state_probability)
Sample from the computational basis states based on the state probability.

This is an auxiliary method to the generate_samples method.

Parameters

• number_of_states (int) – the number of basis states to sample from

• state_probability (array[float]) – the computational basis probability vector

Returns
the sampled basis states

Return type
array[int]

shadow_expval(obs, circuit)
Compute expectation values using classical shadows in a differentiable manner.

Please refer to shadow_expval() for detailed documentation.

Parameters

• obs (ClassicalShadowMP) – The classical shadow expectation value measurement pro-
cess

• circuit (QuantumTape) – The quantum tape that is being executed

Returns
expectation value estimate.

Return type
float

shot_vec_statistics(circuit: QuantumTape)
Process measurement results from circuit execution using a device with a shot vector and return statistics.

This is an auxiliary method of execute and uses statistics.

When using shot vectors, measurement results for each item of the shot vector are contained in a tuple.

Parameters
circuit (QuantumTape) – circuit to execute on the device

Raises
QuantumFunctionError – if the value of return_type is not supported

Returns
stastics for each shot item from the shot vector

Return type
tuple

static states_to_binary(samples, num_wires, dtype=<class 'numpy.int64'>)
Convert basis states from base 10 to binary representation.

This is an auxiliary method to the generate_samples method.

102 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters

• samples (array[int]) – samples of basis states in base 10 representation

• num_wires (int) – the number of qubits

• dtype (type) – Type of the internal integer array to be used. Can be important to specify
for large systems for memory allocation purposes.

Returns
basis states in binary representation

Return type
array[int]

statistics(braket_result: GateModelQuantumTaskResult, measurements:
Sequence[MeasurementProcess])→ list[float]

Processes measurement results from a Braket task result and returns statistics.

Parameters

• braket_result (GateModelQuantumTaskResult) – the Braket task result

• measurements (Sequence[MeasurementProcess]) – the list of measurements

Raises
QuantumFunctionError – if the value of return_type is not supported.

Returns
the corresponding statistics

Return type
list[float]

supports_observable(observable)

Checks if an observable is supported by this device. Raises a ValueError,
if not a subclass or string of an Observable was passed.

Parameters
observable (type or str) – observable to be checked

Raises
ValueError – if observable is not a Observable class or string

Returns
True iff supplied observable is supported

Return type
bool

supports_operation(operation)
Checks if an operation is supported by this device.

Parameters
operation (type or str) – operation to be checked

Raises
ValueError – if operation is not a Operation class or string

Returns
True if supplied operation is supported

2.7. pennylane-braket 103

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
bool

var(observable, shot_range=None, bin_size=None)
Returns the variance of observable on specified wires.

Note: all arguments support _lists_, which indicate a tensor product of observables.

Parameters

• observable (str or list[str]) – name of the observable(s)

• wires (Wires) – wires the observable(s) is to be measured on

• par (tuple or list[tuple]]) – parameters for the observable(s)

Raises
NotImplementedError – if the device does not support variance computation

Returns
variance var(𝐴) = 𝜓𝐴2𝜓 − 𝜓𝐴𝜓2

Return type
float

vn_entropy(wires, log_base)
Returns the Von Neumann entropy prior to measurement.

𝑆(𝜌) = −Tr(𝜌 log(𝜌))

Parameters

• wires (Wires) – Wires of the considered subsystem.

• log_base (float) – Base for the logarithm, default is None the natural logarithm is used
in this case.

Returns
returns the Von Neumann entropy

Return type
float

CPhaseShift00

class CPhaseShift00(phi, wires)
Bases: Operation

Controlled phase shift gate phasing the |00⟩ state.

CPhaseShift00(𝜑) =

⎡⎢⎢⎣
𝑒𝑖𝜑 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .
Details:

• Number of wires: 2

• Number of parameters: 1

• Gradient recipe:

104 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

𝑑

𝑑𝜑
CPhaseShift00(𝜑) =

1

2
[CPhaseShift00(𝜑+ 𝜋/2)− CPhaseShift00(𝜑− 𝜋/2)]

Parameters

• phi (float) – the controlled phase angle

• wires (int) – the subsystem the gate acts on

• id (str, optional) – String representing the operation. Default: None

arithmetic_depth Arithmetic depth of the operator.
basis The basis of an operation, or for controlled gates, of

the target operation.
batch_size Batch size of the operator if it is used with broad-

casted parameters.
control_wires Control wires of the operator.
grad_method

grad_recipe Gradient recipe for the parameter-shift method.
has_adjoint

has_decomposition

has_diagonalizing_gates

has_generator

has_matrix

hash Integer hash that uniquely represents the operator.
hyperparameters Dictionary of non-trainable variables that this opera-

tion depends on.
id Custom string to label a specific operator instance.
is_hermitian This property determines if an operator is hermitian.
name String for the name of the operator.
ndim_params Number of dimensions per trainable parameter of the

operator.
num_params

num_wires Number of wires the operator acts on.
parameter_frequencies

parameters Trainable parameters that the operator depends on.
pauli_rep A PauliSentence representation of the Operator, or

None if it doesn't have one.
wires Wires that the operator acts on.

arithmetic_depth

Arithmetic depth of the operator.

basis

The basis of an operation, or for controlled gates, of the target operation. If not None, should take a value
of "X", "Y", or "Z".

2.7. pennylane-braket 105

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis =
"Z".

Type
str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

The batch_size is determined based on ndim_params and the provided parameters for the operator. If
(some of) the latter have an additional dimension, and this dimension has the same size for all parameters,
its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns
Size of the parameter broadcasting dimension if present, else None.

Return type
int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns
The control wires of the operation.

Return type
Wires

grad_method = 'A'

grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter 𝜑𝑘, the nested list contains
elements of the form [𝑐𝑖, 𝑎𝑖, 𝑠𝑖] where 𝑖 is the index of the term, resulting in a gradient recipe of

𝜕

𝜕𝜑𝑘
𝑓 =

∑︁
𝑖

𝑐𝑖𝑓(𝑎𝑖𝜑𝑘 + 𝑠𝑖).

If None, the default gradient recipe containing the two terms [𝑐0, 𝑎0, 𝑠0] = [1/2, 1, 𝜋/2] and [𝑐1, 𝑎1, 𝑠1] =
[−1/2, 1,−𝜋/2] is assumed for every parameter.

Type
tuple(Union(list[list[float]], None)) or None

has_adjoint = True

has_decomposition = True

has_diagonalizing_gates = False

has_generator = True

has_matrix = True

hash

Integer hash that uniquely represents the operator.

Type
int

106 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type
dict

id

Custom string to label a specific operator instance.

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation.
If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed
value.

Returns
Number of dimensions for each trainable parameter.

Return type
tuple

num_params = 1

num_wires = 2

Number of wires the operator acts on.

parameter_frequencies = [(1,)]

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

wires

Wires that the operator acts on.

Returns
wires

Return type
Wires

2.7. pennylane-braket 107

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

adjoint() Create an operation that is the adjoint of this one.
compute_decomposition(phi, wires) Representation of the operator as a product of other

operators (static method).
compute_diagonalizing_gates(*params, wires,
...)

Sequence of gates that diagonalize the operator in the
computational basis (static method).

compute_eigvals(*params, **hyperparams) Eigenvalues of the operator in the computational ba-
sis (static method).

compute_matrix(phi) Representation of the operator as a canonical matrix
in the computational basis (static method).

compute_sparse_matrix(*params, **hyper-
params)

Representation of the operator as a sparse matrix in
the computational basis (static method).

decomposition() Representation of the operator as a product of other
operators.

diagonalizing_gates() Sequence of gates that diagonalize the operator in the
computational basis.

eigvals() Eigenvalues of the operator in the computational ba-
sis.

expand() Returns a tape that contains the decomposition of the
operator.

generator() Generator of an operator that is in single-parameter-
form.

label([decimals, base_label, cache]) A customizable string representation of the operator.
map_wires(wire_map) Returns a copy of the current operator with its wires

changed according to the given wire map.
matrix([wire_order]) Representation of the operator as a matrix in the com-

putational basis.
pow(z) A list of new operators equal to this one raised to the

given power.
queue([context]) Append the operator to the Operator queue.
simplify() Reduce the depth of nested operators to the minimum.
single_qubit_rot_angles() The parameters required to implement a single-qubit

gate as an equivalent Rot gate, up to a global phase.
sparse_matrix([wire_order]) Representation of the operator as a sparse matrix in

the computational basis.
terms() Representation of the operator as a linear combina-

tion of other operators.
validate_subspace(subspace) Validate the subspace for qutrit operations.

adjoint()

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops
are equivalent to the inverted operation for unitary gates.

Returns
The adjointed operation.

static compute_decomposition(phi, wires)
Representation of the operator as a product of other operators (static method).

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛.

Note: Operations making up the decomposition should be queued within the compute_decomposition

108 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

method.

See also:

decomposition().

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
decomposition of the operator

Return type
list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)
Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

See also:

diagonalizing_gates().

Parameters

• params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
list of diagonalizing gates

Return type
list[.Operator]

static compute_eigvals(*params, **hyperparams)
Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

2.7. pennylane-braket 109

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

See also:

Operator.eigvals() and qml.eigvals()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
eigenvalues

Return type
tensor_like

static compute_matrix(phi)
Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

Operator.matrix() and qml.matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
matrix representation

Return type
tensor_like

static compute_sparse_matrix(*params, **hyperparams)
Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

sparse_matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
sparse matrix representation

110 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_decomposition().

Returns
decomposition of the operator

Return type
list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_diagonalizing_gates().

Returns
a list of operators

Return type
list[.Operator] or None

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note: When eigenvalues are not explicitly defined, they are computed automatically from the matrix
representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from
the matrix representation.

See also:

compute_eigvals()

2.7. pennylane-braket 111

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
eigenvalues

Return type
tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Returns
quantum tape

Return type
.QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

𝑈(𝜑) = 𝑒𝑖𝜑(0.5𝑌+𝑍⊗𝑋)

we get the generator

>>> U.generator()
(0.5) [Y0]

+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and
SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)
A customizable string representation of the operator.

Parameters

• decimals=None (int) – If None, no parameters are included. Else, specifies how to round
the parameters.

• base_label=None (str) – overwrite the non-parameter component of the label

• cache=None (dict) – dictionary that carries information between label calls in the same
drawing

Returns
label to use in drawings

Return type
str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")

(continues on next page)

112 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(continued from previous page)

>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be
cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
[0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],

[0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], requires_grad=True)]

map_wires(wire_map: dict)
Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

Returns
new operator

Return type
.Operator

matrix(wire_order=None)
Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation frame-
work as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also:

compute_matrix()

2.7. pennylane-braket 113

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
matrix representation

Return type
tensor_like

pow(z)→ List[Operator]
A list of new operators equal to this one raised to the given power.

Parameters
z (float) – exponent for the operator

Returns
list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)
Append the operator to the Operator queue.

simplify()→ Operator
Reduce the depth of nested operators to the minimum.

Returns
simplified operator

Return type
.Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns
A list of values [𝜑, 𝜃, 𝜔] such that𝑅𝑍(𝜔)𝑅𝑌 (𝜃)𝑅𝑍(𝜑) is equivalent to the original operation.

Return type
tuple[float, float, float]

sparse_matrix(wire_order=None)
Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

See also:

compute_sparse_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

114 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

terms()

Representation of the operator as a linear combination of other operators.

𝑂 =
∑︁
𝑖

𝑐𝑖𝑂𝑖

A TermsUndefinedError is raised if no representation by terms is defined.

Returns
list of coefficients 𝑐𝑖 and list of operations 𝑂𝑖

Return type
tuple[list[tensor_like or float], list[.Operation]]

static validate_subspace(subspace)
Validate the subspace for qutrit operations.

This method determines whether a given subspace for qutrit operations is defined correctly or not. If not,
a ValueError is thrown.

Parameters
subspace (tuple[int]) – Subspace to check for correctness

CPhaseShift01

class CPhaseShift01(phi, wires)
Bases: Operation

Controlled phase shift gate phasing the |01⟩ state.

CPhaseShift01(𝜑) =

⎡⎢⎢⎣
1 0 0 0
0 𝑒𝑖𝜑 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .
Details:

• Number of wires: 2

• Number of parameters: 1

• Gradient recipe:
𝑑

𝑑𝜑
CPhaseShift01(𝜑) =

1

2
[CPhaseShift01(𝜑+ 𝜋/2)− CPhaseShift01(𝜑− 𝜋/2)]

Parameters

• phi (float) – the controlled phase angle

• wires (int) – the subsystem the gate acts on

• id (str or None) – String representing the operation (optional)

2.7. pennylane-braket 115

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

arithmetic_depth Arithmetic depth of the operator.
basis The basis of an operation, or for controlled gates, of

the target operation.
batch_size Batch size of the operator if it is used with broad-

casted parameters.
control_wires Control wires of the operator.
grad_method

grad_recipe Gradient recipe for the parameter-shift method.
has_adjoint

has_decomposition

has_diagonalizing_gates

has_generator

has_matrix

hash Integer hash that uniquely represents the operator.
hyperparameters Dictionary of non-trainable variables that this opera-

tion depends on.
id Custom string to label a specific operator instance.
is_hermitian This property determines if an operator is hermitian.
name String for the name of the operator.
ndim_params Number of dimensions per trainable parameter of the

operator.
num_params

num_wires Number of wires the operator acts on.
parameter_frequencies

parameters Trainable parameters that the operator depends on.
pauli_rep A PauliSentence representation of the Operator, or

None if it doesn't have one.
wires Wires that the operator acts on.

arithmetic_depth

Arithmetic depth of the operator.

basis

The basis of an operation, or for controlled gates, of the target operation. If not None, should take a value
of "X", "Y", or "Z".

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis =
"Z".

Type
str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

The batch_size is determined based on ndim_params and the provided parameters for the operator. If

116 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(some of) the latter have an additional dimension, and this dimension has the same size for all parameters,
its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns
Size of the parameter broadcasting dimension if present, else None.

Return type
int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns
The control wires of the operation.

Return type
Wires

grad_method = 'A'

grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter 𝜑𝑘, the nested list contains
elements of the form [𝑐𝑖, 𝑎𝑖, 𝑠𝑖] where 𝑖 is the index of the term, resulting in a gradient recipe of

𝜕

𝜕𝜑𝑘
𝑓 =

∑︁
𝑖

𝑐𝑖𝑓(𝑎𝑖𝜑𝑘 + 𝑠𝑖).

If None, the default gradient recipe containing the two terms [𝑐0, 𝑎0, 𝑠0] = [1/2, 1, 𝜋/2] and [𝑐1, 𝑎1, 𝑠1] =
[−1/2, 1,−𝜋/2] is assumed for every parameter.

Type
tuple(Union(list[list[float]], None)) or None

has_adjoint = True

has_decomposition = True

has_diagonalizing_gates = False

has_generator = True

has_matrix = True

hash

Integer hash that uniquely represents the operator.

Type
int

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type
dict

id

Custom string to label a specific operator instance.

2.7. pennylane-braket 117

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation.
If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed
value.

Returns
Number of dimensions for each trainable parameter.

Return type
tuple

num_params = 1

num_wires = 2

Number of wires the operator acts on.

parameter_frequencies = [(1,)]

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

wires

Wires that the operator acts on.

Returns
wires

Return type
Wires

118 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

adjoint() Create an operation that is the adjoint of this one.
compute_decomposition(phi, wires) Representation of the operator as a product of other

operators (static method).
compute_diagonalizing_gates(*params, wires,
...)

Sequence of gates that diagonalize the operator in the
computational basis (static method).

compute_eigvals(*params, **hyperparams) Eigenvalues of the operator in the computational ba-
sis (static method).

compute_matrix(phi) Representation of the operator as a canonical matrix
in the computational basis (static method).

compute_sparse_matrix(*params, **hyper-
params)

Representation of the operator as a sparse matrix in
the computational basis (static method).

decomposition() Representation of the operator as a product of other
operators.

diagonalizing_gates() Sequence of gates that diagonalize the operator in the
computational basis.

eigvals() Eigenvalues of the operator in the computational ba-
sis.

expand() Returns a tape that contains the decomposition of the
operator.

generator() Generator of an operator that is in single-parameter-
form.

label([decimals, base_label, cache]) A customizable string representation of the operator.
map_wires(wire_map) Returns a copy of the current operator with its wires

changed according to the given wire map.
matrix([wire_order]) Representation of the operator as a matrix in the com-

putational basis.
pow(z) A list of new operators equal to this one raised to the

given power.
queue([context]) Append the operator to the Operator queue.
simplify() Reduce the depth of nested operators to the minimum.
single_qubit_rot_angles() The parameters required to implement a single-qubit

gate as an equivalent Rot gate, up to a global phase.
sparse_matrix([wire_order]) Representation of the operator as a sparse matrix in

the computational basis.
terms() Representation of the operator as a linear combina-

tion of other operators.
validate_subspace(subspace) Validate the subspace for qutrit operations.

adjoint()

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops
are equivalent to the inverted operation for unitary gates.

Returns
The adjointed operation.

static compute_decomposition(phi, wires)
Representation of the operator as a product of other operators (static method).

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛.

Note: Operations making up the decomposition should be queued within the compute_decomposition

2.7. pennylane-braket 119

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

method.

See also:

decomposition().

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
decomposition of the operator

Return type
list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)
Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

See also:

diagonalizing_gates().

Parameters

• params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
list of diagonalizing gates

Return type
list[.Operator]

static compute_eigvals(*params, **hyperparams)
Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

120 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

See also:

Operator.eigvals() and qml.eigvals()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
eigenvalues

Return type
tensor_like

static compute_matrix(phi)
Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

Operator.matrix() and qml.matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
matrix representation

Return type
tensor_like

static compute_sparse_matrix(*params, **hyperparams)
Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

sparse_matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
sparse matrix representation

2.7. pennylane-braket 121

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_decomposition().

Returns
decomposition of the operator

Return type
list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_diagonalizing_gates().

Returns
a list of operators

Return type
list[.Operator] or None

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note: When eigenvalues are not explicitly defined, they are computed automatically from the matrix
representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from
the matrix representation.

See also:

compute_eigvals()

122 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
eigenvalues

Return type
tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Returns
quantum tape

Return type
.QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

𝑈(𝜑) = 𝑒𝑖𝜑(0.5𝑌+𝑍⊗𝑋)

we get the generator

>>> U.generator()
(0.5) [Y0]

+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and
SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)
A customizable string representation of the operator.

Parameters

• decimals=None (int) – If None, no parameters are included. Else, specifies how to round
the parameters.

• base_label=None (str) – overwrite the non-parameter component of the label

• cache=None (dict) – dictionary that carries information between label calls in the same
drawing

Returns
label to use in drawings

Return type
str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")

(continues on next page)

2.7. pennylane-braket 123

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(continued from previous page)

>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be
cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
[0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],

[0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], requires_grad=True)]

map_wires(wire_map: dict)
Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

Returns
new operator

Return type
.Operator

matrix(wire_order=None)
Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation frame-
work as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also:

compute_matrix()

124 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
matrix representation

Return type
tensor_like

pow(z)→ List[Operator]
A list of new operators equal to this one raised to the given power.

Parameters
z (float) – exponent for the operator

Returns
list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)
Append the operator to the Operator queue.

simplify()→ Operator
Reduce the depth of nested operators to the minimum.

Returns
simplified operator

Return type
.Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns
A list of values [𝜑, 𝜃, 𝜔] such that𝑅𝑍(𝜔)𝑅𝑌 (𝜃)𝑅𝑍(𝜑) is equivalent to the original operation.

Return type
tuple[float, float, float]

sparse_matrix(wire_order=None)
Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

See also:

compute_sparse_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

2.7. pennylane-braket 125

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

terms()

Representation of the operator as a linear combination of other operators.

𝑂 =
∑︁
𝑖

𝑐𝑖𝑂𝑖

A TermsUndefinedError is raised if no representation by terms is defined.

Returns
list of coefficients 𝑐𝑖 and list of operations 𝑂𝑖

Return type
tuple[list[tensor_like or float], list[.Operation]]

static validate_subspace(subspace)
Validate the subspace for qutrit operations.

This method determines whether a given subspace for qutrit operations is defined correctly or not. If not,
a ValueError is thrown.

Parameters
subspace (tuple[int]) – Subspace to check for correctness

CPhaseShift10

class CPhaseShift10(phi, wires)
Bases: Operation

Controlled phase shift gate phasing the |10⟩ state.

CPhaseShift10(𝜑) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 𝑒𝑖𝜑 0
0 0 0 1

⎤⎥⎥⎦ .
Details:

• Number of wires: 2

• Number of parameters: 1

• Gradient recipe:
𝑑

𝑑𝜑
CPhaseShift10(𝜑) =

1

2
[CPhaseShift10(𝜑+ 𝜋/2)− CPhaseShift10(𝜑− 𝜋/2)]

Parameters

• phi (float) – the controlled phase angle

• wires (int) – the subsystem the gate acts on

• id (str or None) – String representing the operation (optional)

126 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

arithmetic_depth Arithmetic depth of the operator.
basis The basis of an operation, or for controlled gates, of

the target operation.
batch_size Batch size of the operator if it is used with broad-

casted parameters.
control_wires Control wires of the operator.
grad_method

grad_recipe Gradient recipe for the parameter-shift method.
has_adjoint

has_decomposition

has_diagonalizing_gates

has_generator

has_matrix

hash Integer hash that uniquely represents the operator.
hyperparameters Dictionary of non-trainable variables that this opera-

tion depends on.
id Custom string to label a specific operator instance.
is_hermitian This property determines if an operator is hermitian.
name String for the name of the operator.
ndim_params Number of dimensions per trainable parameter of the

operator.
num_params

num_wires Number of wires the operator acts on.
parameter_frequencies

parameters Trainable parameters that the operator depends on.
pauli_rep A PauliSentence representation of the Operator, or

None if it doesn't have one.
wires Wires that the operator acts on.

arithmetic_depth

Arithmetic depth of the operator.

basis

The basis of an operation, or for controlled gates, of the target operation. If not None, should take a value
of "X", "Y", or "Z".

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis =
"Z".

Type
str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

The batch_size is determined based on ndim_params and the provided parameters for the operator. If

2.7. pennylane-braket 127

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(some of) the latter have an additional dimension, and this dimension has the same size for all parameters,
its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns
Size of the parameter broadcasting dimension if present, else None.

Return type
int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns
The control wires of the operation.

Return type
Wires

grad_method = 'A'

grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter 𝜑𝑘, the nested list contains
elements of the form [𝑐𝑖, 𝑎𝑖, 𝑠𝑖] where 𝑖 is the index of the term, resulting in a gradient recipe of

𝜕

𝜕𝜑𝑘
𝑓 =

∑︁
𝑖

𝑐𝑖𝑓(𝑎𝑖𝜑𝑘 + 𝑠𝑖).

If None, the default gradient recipe containing the two terms [𝑐0, 𝑎0, 𝑠0] = [1/2, 1, 𝜋/2] and [𝑐1, 𝑎1, 𝑠1] =
[−1/2, 1,−𝜋/2] is assumed for every parameter.

Type
tuple(Union(list[list[float]], None)) or None

has_adjoint = True

has_decomposition = True

has_diagonalizing_gates = False

has_generator = True

has_matrix = True

hash

Integer hash that uniquely represents the operator.

Type
int

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type
dict

id

Custom string to label a specific operator instance.

128 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation.
If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed
value.

Returns
Number of dimensions for each trainable parameter.

Return type
tuple

num_params = 1

num_wires = 2

Number of wires the operator acts on.

parameter_frequencies = [(1,)]

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

wires

Wires that the operator acts on.

Returns
wires

Return type
Wires

2.7. pennylane-braket 129

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

adjoint() Create an operation that is the adjoint of this one.
compute_decomposition(phi, wires) Representation of the operator as a product of other

operators (static method).
compute_diagonalizing_gates(*params, wires,
...)

Sequence of gates that diagonalize the operator in the
computational basis (static method).

compute_eigvals(*params, **hyperparams) Eigenvalues of the operator in the computational ba-
sis (static method).

compute_matrix(phi) Representation of the operator as a canonical matrix
in the computational basis (static method).

compute_sparse_matrix(*params, **hyper-
params)

Representation of the operator as a sparse matrix in
the computational basis (static method).

decomposition() Representation of the operator as a product of other
operators.

diagonalizing_gates() Sequence of gates that diagonalize the operator in the
computational basis.

eigvals() Eigenvalues of the operator in the computational ba-
sis.

expand() Returns a tape that contains the decomposition of the
operator.

generator() Generator of an operator that is in single-parameter-
form.

label([decimals, base_label, cache]) A customizable string representation of the operator.
map_wires(wire_map) Returns a copy of the current operator with its wires

changed according to the given wire map.
matrix([wire_order]) Representation of the operator as a matrix in the com-

putational basis.
pow(z) A list of new operators equal to this one raised to the

given power.
queue([context]) Append the operator to the Operator queue.
simplify() Reduce the depth of nested operators to the minimum.
single_qubit_rot_angles() The parameters required to implement a single-qubit

gate as an equivalent Rot gate, up to a global phase.
sparse_matrix([wire_order]) Representation of the operator as a sparse matrix in

the computational basis.
terms() Representation of the operator as a linear combina-

tion of other operators.
validate_subspace(subspace) Validate the subspace for qutrit operations.

adjoint()

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops
are equivalent to the inverted operation for unitary gates.

Returns
The adjointed operation.

static compute_decomposition(phi, wires)
Representation of the operator as a product of other operators (static method).

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛.

Note: Operations making up the decomposition should be queued within the compute_decomposition

130 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

method.

See also:

decomposition().

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
decomposition of the operator

Return type
list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)
Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

See also:

diagonalizing_gates().

Parameters

• params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
list of diagonalizing gates

Return type
list[.Operator]

static compute_eigvals(*params, **hyperparams)
Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

2.7. pennylane-braket 131

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

See also:

Operator.eigvals() and qml.eigvals()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
eigenvalues

Return type
tensor_like

static compute_matrix(phi)
Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

Operator.matrix() and qml.matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
matrix representation

Return type
tensor_like

static compute_sparse_matrix(*params, **hyperparams)
Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

sparse_matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
sparse matrix representation

132 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_decomposition().

Returns
decomposition of the operator

Return type
list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_diagonalizing_gates().

Returns
a list of operators

Return type
list[.Operator] or None

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note: When eigenvalues are not explicitly defined, they are computed automatically from the matrix
representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from
the matrix representation.

See also:

compute_eigvals()

2.7. pennylane-braket 133

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
eigenvalues

Return type
tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Returns
quantum tape

Return type
.QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

𝑈(𝜑) = 𝑒𝑖𝜑(0.5𝑌+𝑍⊗𝑋)

we get the generator

>>> U.generator()
(0.5) [Y0]

+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and
SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)
A customizable string representation of the operator.

Parameters

• decimals=None (int) – If None, no parameters are included. Else, specifies how to round
the parameters.

• base_label=None (str) – overwrite the non-parameter component of the label

• cache=None (dict) – dictionary that carries information between label calls in the same
drawing

Returns
label to use in drawings

Return type
str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")

(continues on next page)

134 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(continued from previous page)

>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be
cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
[0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],

[0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], requires_grad=True)]

map_wires(wire_map: dict)
Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

Returns
new operator

Return type
.Operator

matrix(wire_order=None)
Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation frame-
work as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also:

compute_matrix()

2.7. pennylane-braket 135

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
matrix representation

Return type
tensor_like

pow(z)→ List[Operator]
A list of new operators equal to this one raised to the given power.

Parameters
z (float) – exponent for the operator

Returns
list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)
Append the operator to the Operator queue.

simplify()→ Operator
Reduce the depth of nested operators to the minimum.

Returns
simplified operator

Return type
.Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns
A list of values [𝜑, 𝜃, 𝜔] such that𝑅𝑍(𝜔)𝑅𝑌 (𝜃)𝑅𝑍(𝜑) is equivalent to the original operation.

Return type
tuple[float, float, float]

sparse_matrix(wire_order=None)
Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

See also:

compute_sparse_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

136 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

terms()

Representation of the operator as a linear combination of other operators.

𝑂 =
∑︁
𝑖

𝑐𝑖𝑂𝑖

A TermsUndefinedError is raised if no representation by terms is defined.

Returns
list of coefficients 𝑐𝑖 and list of operations 𝑂𝑖

Return type
tuple[list[tensor_like or float], list[.Operation]]

static validate_subspace(subspace)
Validate the subspace for qutrit operations.

This method determines whether a given subspace for qutrit operations is defined correctly or not. If not,
a ValueError is thrown.

Parameters
subspace (tuple[int]) – Subspace to check for correctness

GPi

class GPi(phi, wires)
Bases: Operation

IonQ native GPi gate.

GPi(𝜑) =

[︂
0 𝑒−𝑖𝜑

𝑒𝑖𝜑 0

]︂
.

Details:

• Number of wires: 1

• Number of parameters: 1

Parameters

• phi (float) – the phase angle

• wires (int) – the subsystem the gate acts on

• id (str or None) – String representing the operation (optional)

2.7. pennylane-braket 137

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

arithmetic_depth Arithmetic depth of the operator.
basis The basis of an operation, or for controlled gates, of

the target operation.
batch_size Batch size of the operator if it is used with broad-

casted parameters.
control_wires Control wires of the operator.
grad_method

grad_recipe Gradient recipe for the parameter-shift method.
has_adjoint

has_decomposition

has_diagonalizing_gates

has_generator

has_matrix

hash Integer hash that uniquely represents the operator.
hyperparameters Dictionary of non-trainable variables that this opera-

tion depends on.
id Custom string to label a specific operator instance.
is_hermitian This property determines if an operator is hermitian.
name String for the name of the operator.
ndim_params Number of dimensions per trainable parameter of the

operator.
num_params

num_wires Number of wires the operator acts on.
parameter_frequencies Returns the frequencies for each operator parame-

ter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

parameters Trainable parameters that the operator depends on.
pauli_rep A PauliSentence representation of the Operator, or

None if it doesn't have one.
wires Wires that the operator acts on.

arithmetic_depth

Arithmetic depth of the operator.

basis

The basis of an operation, or for controlled gates, of the target operation. If not None, should take a value
of "X", "Y", or "Z".

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis =
"Z".

Type
str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

138 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

The batch_size is determined based on ndim_params and the provided parameters for the operator. If
(some of) the latter have an additional dimension, and this dimension has the same size for all parameters,
its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns
Size of the parameter broadcasting dimension if present, else None.

Return type
int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns
The control wires of the operation.

Return type
Wires

grad_method = 'F'

grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter 𝜑𝑘, the nested list contains
elements of the form [𝑐𝑖, 𝑎𝑖, 𝑠𝑖] where 𝑖 is the index of the term, resulting in a gradient recipe of

𝜕

𝜕𝜑𝑘
𝑓 =

∑︁
𝑖

𝑐𝑖𝑓(𝑎𝑖𝜑𝑘 + 𝑠𝑖).

If None, the default gradient recipe containing the two terms [𝑐0, 𝑎0, 𝑠0] = [1/2, 1, 𝜋/2] and [𝑐1, 𝑎1, 𝑠1] =
[−1/2, 1,−𝜋/2] is assumed for every parameter.

Type
tuple(Union(list[list[float]], None)) or None

has_adjoint = True

has_decomposition = False

has_diagonalizing_gates = False

has_generator = False

has_matrix = True

hash

Integer hash that uniquely represents the operator.

Type
int

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type
dict

2.7. pennylane-braket 139

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

id

Custom string to label a specific operator instance.

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation.
If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed
value.

Returns
Number of dimensions for each trainable parameter.

Return type
tuple

num_params = 1

num_wires = 1

Number of wires the operator acts on.

parameter_frequencies

Returns the frequencies for each operator parameter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

These frequencies encode the behaviour of the operator 𝑈(p) on the value of the expectation value as the
parameters are modified. For more details, please see the pennylane.fourier module.

Returns
Tuple of frequencies for each parameter. Note that only non-negative frequency values are
returned.

Return type
list[tuple[int or float]]

Example

>>> op = qml.CRot(0.4, 0.1, 0.3, wires=[0, 1])
>>> op.parameter_frequencies
[(0.5, 1), (0.5, 1), (0.5, 1)]

For operators that define a generator, the parameter frequencies are directly related to the eigenvalues of
the generator:

>>> op = qml.ControlledPhaseShift(0.1, wires=[0, 1])
>>> op.parameter_frequencies
[(1,)]
>>> gen = qml.generator(op, format="observable")
>>> gen_eigvals = qml.eigvals(gen)
>>> qml.gradients.eigvals_to_frequencies(tuple(gen_eigvals))
(1.0,)

For more details on this relationship, see eigvals_to_frequencies().

140 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

wires

Wires that the operator acts on.

Returns
wires

Return type
Wires

adjoint() Create an operation that is the adjoint of this one.
compute_decomposition(*params[, wires]) Representation of the operator as a product of other

operators (static method).
compute_diagonalizing_gates(*params, wires,
...)

Sequence of gates that diagonalize the operator in the
computational basis (static method).

compute_eigvals(*params, **hyperparams) Eigenvalues of the operator in the computational ba-
sis (static method).

compute_matrix(phi) Representation of the operator as a canonical matrix
in the computational basis (static method).

compute_sparse_matrix(*params, **hyper-
params)

Representation of the operator as a sparse matrix in
the computational basis (static method).

decomposition() Representation of the operator as a product of other
operators.

diagonalizing_gates() Sequence of gates that diagonalize the operator in the
computational basis.

eigvals() Eigenvalues of the operator in the computational ba-
sis.

expand() Returns a tape that contains the decomposition of the
operator.

generator() Generator of an operator that is in single-parameter-
form.

label([decimals, base_label, cache]) A customizable string representation of the operator.
map_wires(wire_map) Returns a copy of the current operator with its wires

changed according to the given wire map.
matrix([wire_order]) Representation of the operator as a matrix in the com-

putational basis.
pow(z) A list of new operators equal to this one raised to the

given power.
queue([context]) Append the operator to the Operator queue.
simplify() Reduce the depth of nested operators to the minimum.
single_qubit_rot_angles() The parameters required to implement a single-qubit

gate as an equivalent Rot gate, up to a global phase.
sparse_matrix([wire_order]) Representation of the operator as a sparse matrix in

the computational basis.
terms() Representation of the operator as a linear combina-

tion of other operators.
validate_subspace(subspace) Validate the subspace for qutrit operations.

adjoint()

2.7. pennylane-braket 141

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops
are equivalent to the inverted operation for unitary gates.

Returns
The adjointed operation.

static compute_decomposition(*params, wires=None, **hyperparameters)
Representation of the operator as a product of other operators (static method).

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛.

Note: Operations making up the decomposition should be queued within the compute_decomposition
method.

See also:

decomposition().

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
decomposition of the operator

Return type
list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)
Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

See also:

diagonalizing_gates().

Parameters

• params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

142 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
list of diagonalizing gates

Return type
list[.Operator]

static compute_eigvals(*params, **hyperparams)
Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

See also:

Operator.eigvals() and qml.eigvals()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
eigenvalues

Return type
tensor_like

static compute_matrix(phi)
Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

Operator.matrix() and qml.matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
matrix representation

Return type
tensor_like

2.7. pennylane-braket 143

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

static compute_sparse_matrix(*params, **hyperparams)
Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

sparse_matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_decomposition().

Returns
decomposition of the operator

Return type
list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_diagonalizing_gates().

Returns
a list of operators

Return type
list[.Operator] or None

144 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note: When eigenvalues are not explicitly defined, they are computed automatically from the matrix
representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from
the matrix representation.

See also:

compute_eigvals()

Returns
eigenvalues

Return type
tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Returns
quantum tape

Return type
.QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

𝑈(𝜑) = 𝑒𝑖𝜑(0.5𝑌+𝑍⊗𝑋)

we get the generator

>>> U.generator()
(0.5) [Y0]

+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and
SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)
A customizable string representation of the operator.

Parameters

2.7. pennylane-braket 145

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• decimals=None (int) – If None, no parameters are included. Else, specifies how to round
the parameters.

• base_label=None (str) – overwrite the non-parameter component of the label

• cache=None (dict) – dictionary that carries information between label calls in the same
drawing

Returns
label to use in drawings

Return type
str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")
>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be
cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
[0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],

[0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], requires_grad=True)]

map_wires(wire_map: dict)
Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

146 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
new operator

Return type
.Operator

matrix(wire_order=None)
Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation frame-
work as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also:

compute_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
matrix representation

Return type
tensor_like

pow(z)→ List[Operator]
A list of new operators equal to this one raised to the given power.

Parameters
z (float) – exponent for the operator

Returns
list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)
Append the operator to the Operator queue.

simplify()→ Operator
Reduce the depth of nested operators to the minimum.

Returns
simplified operator

Return type
.Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns
A list of values [𝜑, 𝜃, 𝜔] such that𝑅𝑍(𝜔)𝑅𝑌 (𝜃)𝑅𝑍(𝜑) is equivalent to the original operation.

Return type
tuple[float, float, float]

2.7. pennylane-braket 147

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

sparse_matrix(wire_order=None)
Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

See also:

compute_sparse_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

terms()

Representation of the operator as a linear combination of other operators.

𝑂 =
∑︁
𝑖

𝑐𝑖𝑂𝑖

A TermsUndefinedError is raised if no representation by terms is defined.

Returns
list of coefficients 𝑐𝑖 and list of operations 𝑂𝑖

Return type
tuple[list[tensor_like or float], list[.Operation]]

static validate_subspace(subspace)
Validate the subspace for qutrit operations.

This method determines whether a given subspace for qutrit operations is defined correctly or not. If not,
a ValueError is thrown.

Parameters
subspace (tuple[int]) – Subspace to check for correctness

GPi2

class GPi2(phi, wires)
Bases: Operation

IonQ native GPi2 gate.

GPi2(𝜑) =
1√
2

[︂
1 −𝑖𝑒−𝑖𝜑

−𝑖𝑒𝑖𝜑 1

]︂
.

Details:

• Number of wires: 1

• Number of parameters: 1

148 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters

• phi (float) – the phase angle

• wires (int) – the subsystem the gate acts on

• id (str or None) – String representing the operation (optional)

arithmetic_depth Arithmetic depth of the operator.
basis The basis of an operation, or for controlled gates, of

the target operation.
batch_size Batch size of the operator if it is used with broad-

casted parameters.
control_wires Control wires of the operator.
grad_method

grad_recipe Gradient recipe for the parameter-shift method.
has_adjoint

has_decomposition

has_diagonalizing_gates

has_generator

has_matrix

hash Integer hash that uniquely represents the operator.
hyperparameters Dictionary of non-trainable variables that this opera-

tion depends on.
id Custom string to label a specific operator instance.
is_hermitian This property determines if an operator is hermitian.
name String for the name of the operator.
ndim_params Number of dimensions per trainable parameter of the

operator.
num_params

num_wires Number of wires the operator acts on.
parameter_frequencies Returns the frequencies for each operator parame-

ter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

parameters Trainable parameters that the operator depends on.
pauli_rep A PauliSentence representation of the Operator, or

None if it doesn't have one.
wires Wires that the operator acts on.

arithmetic_depth

Arithmetic depth of the operator.

basis

The basis of an operation, or for controlled gates, of the target operation. If not None, should take a value
of "X", "Y", or "Z".

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis =
"Z".

2.7. pennylane-braket 149

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Type
str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

The batch_size is determined based on ndim_params and the provided parameters for the operator. If
(some of) the latter have an additional dimension, and this dimension has the same size for all parameters,
its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns
Size of the parameter broadcasting dimension if present, else None.

Return type
int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns
The control wires of the operation.

Return type
Wires

grad_method = 'F'

grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter 𝜑𝑘, the nested list contains
elements of the form [𝑐𝑖, 𝑎𝑖, 𝑠𝑖] where 𝑖 is the index of the term, resulting in a gradient recipe of

𝜕

𝜕𝜑𝑘
𝑓 =

∑︁
𝑖

𝑐𝑖𝑓(𝑎𝑖𝜑𝑘 + 𝑠𝑖).

If None, the default gradient recipe containing the two terms [𝑐0, 𝑎0, 𝑠0] = [1/2, 1, 𝜋/2] and [𝑐1, 𝑎1, 𝑠1] =
[−1/2, 1,−𝜋/2] is assumed for every parameter.

Type
tuple(Union(list[list[float]], None)) or None

has_adjoint = True

has_decomposition = False

has_diagonalizing_gates = False

has_generator = False

has_matrix = True

hash

Integer hash that uniquely represents the operator.

Type
int

150 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type
dict

id

Custom string to label a specific operator instance.

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation.
If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed
value.

Returns
Number of dimensions for each trainable parameter.

Return type
tuple

num_params = 1

num_wires = 1

Number of wires the operator acts on.

parameter_frequencies

Returns the frequencies for each operator parameter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

These frequencies encode the behaviour of the operator 𝑈(p) on the value of the expectation value as the
parameters are modified. For more details, please see the pennylane.fourier module.

Returns
Tuple of frequencies for each parameter. Note that only non-negative frequency values are
returned.

Return type
list[tuple[int or float]]

Example

>>> op = qml.CRot(0.4, 0.1, 0.3, wires=[0, 1])
>>> op.parameter_frequencies
[(0.5, 1), (0.5, 1), (0.5, 1)]

For operators that define a generator, the parameter frequencies are directly related to the eigenvalues of
the generator:

>>> op = qml.ControlledPhaseShift(0.1, wires=[0, 1])
>>> op.parameter_frequencies
[(1,)]

(continues on next page)

2.7. pennylane-braket 151

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(continued from previous page)

>>> gen = qml.generator(op, format="observable")
>>> gen_eigvals = qml.eigvals(gen)
>>> qml.gradients.eigvals_to_frequencies(tuple(gen_eigvals))
(1.0,)

For more details on this relationship, see eigvals_to_frequencies().

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

wires

Wires that the operator acts on.

Returns
wires

Return type
Wires

152 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

adjoint() Create an operation that is the adjoint of this one.
compute_decomposition(*params[, wires]) Representation of the operator as a product of other

operators (static method).
compute_diagonalizing_gates(*params, wires,
...)

Sequence of gates that diagonalize the operator in the
computational basis (static method).

compute_eigvals(*params, **hyperparams) Eigenvalues of the operator in the computational ba-
sis (static method).

compute_matrix(phi) Representation of the operator as a canonical matrix
in the computational basis (static method).

compute_sparse_matrix(*params, **hyper-
params)

Representation of the operator as a sparse matrix in
the computational basis (static method).

decomposition() Representation of the operator as a product of other
operators.

diagonalizing_gates() Sequence of gates that diagonalize the operator in the
computational basis.

eigvals() Eigenvalues of the operator in the computational ba-
sis.

expand() Returns a tape that contains the decomposition of the
operator.

generator() Generator of an operator that is in single-parameter-
form.

label([decimals, base_label, cache]) A customizable string representation of the operator.
map_wires(wire_map) Returns a copy of the current operator with its wires

changed according to the given wire map.
matrix([wire_order]) Representation of the operator as a matrix in the com-

putational basis.
pow(z) A list of new operators equal to this one raised to the

given power.
queue([context]) Append the operator to the Operator queue.
simplify() Reduce the depth of nested operators to the minimum.
single_qubit_rot_angles() The parameters required to implement a single-qubit

gate as an equivalent Rot gate, up to a global phase.
sparse_matrix([wire_order]) Representation of the operator as a sparse matrix in

the computational basis.
terms() Representation of the operator as a linear combina-

tion of other operators.
validate_subspace(subspace) Validate the subspace for qutrit operations.

adjoint()

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops
are equivalent to the inverted operation for unitary gates.

Returns
The adjointed operation.

static compute_decomposition(*params, wires=None, **hyperparameters)
Representation of the operator as a product of other operators (static method).

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛.

Note: Operations making up the decomposition should be queued within the compute_decomposition

2.7. pennylane-braket 153

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

method.

See also:

decomposition().

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
decomposition of the operator

Return type
list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)
Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

See also:

diagonalizing_gates().

Parameters

• params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
list of diagonalizing gates

Return type
list[.Operator]

static compute_eigvals(*params, **hyperparams)
Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

154 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

See also:

Operator.eigvals() and qml.eigvals()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
eigenvalues

Return type
tensor_like

static compute_matrix(phi)
Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

Operator.matrix() and qml.matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
matrix representation

Return type
tensor_like

static compute_sparse_matrix(*params, **hyperparams)
Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

sparse_matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
sparse matrix representation

2.7. pennylane-braket 155

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_decomposition().

Returns
decomposition of the operator

Return type
list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_diagonalizing_gates().

Returns
a list of operators

Return type
list[.Operator] or None

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note: When eigenvalues are not explicitly defined, they are computed automatically from the matrix
representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from
the matrix representation.

See also:

compute_eigvals()

156 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
eigenvalues

Return type
tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Returns
quantum tape

Return type
.QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

𝑈(𝜑) = 𝑒𝑖𝜑(0.5𝑌+𝑍⊗𝑋)

we get the generator

>>> U.generator()
(0.5) [Y0]

+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and
SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)
A customizable string representation of the operator.

Parameters

• decimals=None (int) – If None, no parameters are included. Else, specifies how to round
the parameters.

• base_label=None (str) – overwrite the non-parameter component of the label

• cache=None (dict) – dictionary that carries information between label calls in the same
drawing

Returns
label to use in drawings

Return type
str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")

(continues on next page)

2.7. pennylane-braket 157

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(continued from previous page)

>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be
cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
[0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],

[0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], requires_grad=True)]

map_wires(wire_map: dict)
Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

Returns
new operator

Return type
.Operator

matrix(wire_order=None)
Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation frame-
work as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also:

compute_matrix()

158 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
matrix representation

Return type
tensor_like

pow(z)→ List[Operator]
A list of new operators equal to this one raised to the given power.

Parameters
z (float) – exponent for the operator

Returns
list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)
Append the operator to the Operator queue.

simplify()→ Operator
Reduce the depth of nested operators to the minimum.

Returns
simplified operator

Return type
.Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns
A list of values [𝜑, 𝜃, 𝜔] such that𝑅𝑍(𝜔)𝑅𝑌 (𝜃)𝑅𝑍(𝜑) is equivalent to the original operation.

Return type
tuple[float, float, float]

sparse_matrix(wire_order=None)
Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

See also:

compute_sparse_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

2.7. pennylane-braket 159

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

terms()

Representation of the operator as a linear combination of other operators.

𝑂 =
∑︁
𝑖

𝑐𝑖𝑂𝑖

A TermsUndefinedError is raised if no representation by terms is defined.

Returns
list of coefficients 𝑐𝑖 and list of operations 𝑂𝑖

Return type
tuple[list[tensor_like or float], list[.Operation]]

static validate_subspace(subspace)
Validate the subspace for qutrit operations.

This method determines whether a given subspace for qutrit operations is defined correctly or not. If not,
a ValueError is thrown.

Parameters
subspace (tuple[int]) – Subspace to check for correctness

MS

class MS(phi_0, phi_1, wires)
Bases: Operation

IonQ native Mølmer-Sørenson gate.

MS(𝜑0, 𝜑1) =
1√
2

⎡⎢⎢⎣
1 0 0 −𝑖𝑒−𝑖(𝜑0+𝜑1)

0 1 −𝑖𝑒−𝑖(𝜑0−𝜑1) 0
0 −𝑖𝑒𝑖(𝜑0−𝜑1) 1 0

−𝑖𝑒𝑖(𝜑0+𝜑1) 0 0 1

⎤⎥⎥⎦ .
Details:

• Number of wires: 2

• Number of parameters: 2

Parameters

• phi_0 (float) – the first phase angle

• phi_1 (float) – the second phase angle

• wires (int) – the subsystem the gate acts on

• id (str or None) – String representing the operation (optional)

160 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

arithmetic_depth Arithmetic depth of the operator.
basis The basis of an operation, or for controlled gates, of

the target operation.
batch_size Batch size of the operator if it is used with broad-

casted parameters.
control_wires Control wires of the operator.
grad_method

grad_recipe Gradient recipe for the parameter-shift method.
has_adjoint

has_decomposition

has_diagonalizing_gates

has_generator

has_matrix

hash Integer hash that uniquely represents the operator.
hyperparameters Dictionary of non-trainable variables that this opera-

tion depends on.
id Custom string to label a specific operator instance.
is_hermitian This property determines if an operator is hermitian.
name String for the name of the operator.
ndim_params Number of dimensions per trainable parameter of the

operator.
num_params

num_wires Number of wires the operator acts on.
parameter_frequencies Returns the frequencies for each operator parame-

ter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

parameters Trainable parameters that the operator depends on.
pauli_rep A PauliSentence representation of the Operator, or

None if it doesn't have one.
wires Wires that the operator acts on.

arithmetic_depth

Arithmetic depth of the operator.

basis

The basis of an operation, or for controlled gates, of the target operation. If not None, should take a value
of "X", "Y", or "Z".

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis =
"Z".

Type
str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

2.7. pennylane-braket 161

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

The batch_size is determined based on ndim_params and the provided parameters for the operator. If
(some of) the latter have an additional dimension, and this dimension has the same size for all parameters,
its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns
Size of the parameter broadcasting dimension if present, else None.

Return type
int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns
The control wires of the operation.

Return type
Wires

grad_method = 'F'

grad_recipe = None

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter 𝜑𝑘, the nested list contains
elements of the form [𝑐𝑖, 𝑎𝑖, 𝑠𝑖] where 𝑖 is the index of the term, resulting in a gradient recipe of

𝜕

𝜕𝜑𝑘
𝑓 =

∑︁
𝑖

𝑐𝑖𝑓(𝑎𝑖𝜑𝑘 + 𝑠𝑖).

If None, the default gradient recipe containing the two terms [𝑐0, 𝑎0, 𝑠0] = [1/2, 1, 𝜋/2] and [𝑐1, 𝑎1, 𝑠1] =
[−1/2, 1,−𝜋/2] is assumed for every parameter.

Type
tuple(Union(list[list[float]], None)) or None

has_adjoint = True

has_decomposition = False

has_diagonalizing_gates = False

has_generator = False

has_matrix = True

hash

Integer hash that uniquely represents the operator.

Type
int

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type
dict

162 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

id

Custom string to label a specific operator instance.

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation.
If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed
value.

Returns
Number of dimensions for each trainable parameter.

Return type
tuple

num_params = 2

num_wires = 2

Number of wires the operator acts on.

parameter_frequencies

Returns the frequencies for each operator parameter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

These frequencies encode the behaviour of the operator 𝑈(p) on the value of the expectation value as the
parameters are modified. For more details, please see the pennylane.fourier module.

Returns
Tuple of frequencies for each parameter. Note that only non-negative frequency values are
returned.

Return type
list[tuple[int or float]]

Example

>>> op = qml.CRot(0.4, 0.1, 0.3, wires=[0, 1])
>>> op.parameter_frequencies
[(0.5, 1), (0.5, 1), (0.5, 1)]

For operators that define a generator, the parameter frequencies are directly related to the eigenvalues of
the generator:

>>> op = qml.ControlledPhaseShift(0.1, wires=[0, 1])
>>> op.parameter_frequencies
[(1,)]
>>> gen = qml.generator(op, format="observable")
>>> gen_eigvals = qml.eigvals(gen)
>>> qml.gradients.eigvals_to_frequencies(tuple(gen_eigvals))
(1.0,)

For more details on this relationship, see eigvals_to_frequencies().

2.7. pennylane-braket 163

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

wires

Wires that the operator acts on.

Returns
wires

Return type
Wires

adjoint() Create an operation that is the adjoint of this one.
compute_decomposition(*params[, wires]) Representation of the operator as a product of other

operators (static method).
compute_diagonalizing_gates(*params, wires,
...)

Sequence of gates that diagonalize the operator in the
computational basis (static method).

compute_eigvals(*params, **hyperparams) Eigenvalues of the operator in the computational ba-
sis (static method).

compute_matrix(phi_0, phi_1) Representation of the operator as a canonical matrix
in the computational basis (static method).

compute_sparse_matrix(*params, **hyper-
params)

Representation of the operator as a sparse matrix in
the computational basis (static method).

decomposition() Representation of the operator as a product of other
operators.

diagonalizing_gates() Sequence of gates that diagonalize the operator in the
computational basis.

eigvals() Eigenvalues of the operator in the computational ba-
sis.

expand() Returns a tape that contains the decomposition of the
operator.

generator() Generator of an operator that is in single-parameter-
form.

label([decimals, base_label, cache]) A customizable string representation of the operator.
map_wires(wire_map) Returns a copy of the current operator with its wires

changed according to the given wire map.
matrix([wire_order]) Representation of the operator as a matrix in the com-

putational basis.
pow(z) A list of new operators equal to this one raised to the

given power.
queue([context]) Append the operator to the Operator queue.
simplify() Reduce the depth of nested operators to the minimum.
single_qubit_rot_angles() The parameters required to implement a single-qubit

gate as an equivalent Rot gate, up to a global phase.
sparse_matrix([wire_order]) Representation of the operator as a sparse matrix in

the computational basis.
terms() Representation of the operator as a linear combina-

tion of other operators.
validate_subspace(subspace) Validate the subspace for qutrit operations.

adjoint()

164 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops
are equivalent to the inverted operation for unitary gates.

Returns
The adjointed operation.

static compute_decomposition(*params, wires=None, **hyperparameters)
Representation of the operator as a product of other operators (static method).

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛.

Note: Operations making up the decomposition should be queued within the compute_decomposition
method.

See also:

decomposition().

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
decomposition of the operator

Return type
list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)
Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

See also:

diagonalizing_gates().

Parameters

• params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

2.7. pennylane-braket 165

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
list of diagonalizing gates

Return type
list[.Operator]

static compute_eigvals(*params, **hyperparams)
Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

See also:

Operator.eigvals() and qml.eigvals()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
eigenvalues

Return type
tensor_like

static compute_matrix(phi_0, phi_1)
Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

Operator.matrix() and qml.matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
matrix representation

Return type
tensor_like

166 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

static compute_sparse_matrix(*params, **hyperparams)
Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

sparse_matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_decomposition().

Returns
decomposition of the operator

Return type
list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_diagonalizing_gates().

Returns
a list of operators

Return type
list[.Operator] or None

2.7. pennylane-braket 167

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note: When eigenvalues are not explicitly defined, they are computed automatically from the matrix
representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from
the matrix representation.

See also:

compute_eigvals()

Returns
eigenvalues

Return type
tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Returns
quantum tape

Return type
.QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

𝑈(𝜑) = 𝑒𝑖𝜑(0.5𝑌+𝑍⊗𝑋)

we get the generator

>>> U.generator()
(0.5) [Y0]

+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and
SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)
A customizable string representation of the operator.

Parameters

168 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• decimals=None (int) – If None, no parameters are included. Else, specifies how to round
the parameters.

• base_label=None (str) – overwrite the non-parameter component of the label

• cache=None (dict) – dictionary that carries information between label calls in the same
drawing

Returns
label to use in drawings

Return type
str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")
>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be
cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
[0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],

[0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], requires_grad=True)]

map_wires(wire_map: dict)
Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

2.7. pennylane-braket 169

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
new operator

Return type
.Operator

matrix(wire_order=None)
Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation frame-
work as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also:

compute_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
matrix representation

Return type
tensor_like

pow(z)→ List[Operator]
A list of new operators equal to this one raised to the given power.

Parameters
z (float) – exponent for the operator

Returns
list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)
Append the operator to the Operator queue.

simplify()→ Operator
Reduce the depth of nested operators to the minimum.

Returns
simplified operator

Return type
.Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns
A list of values [𝜑, 𝜃, 𝜔] such that𝑅𝑍(𝜔)𝑅𝑌 (𝜃)𝑅𝑍(𝜑) is equivalent to the original operation.

Return type
tuple[float, float, float]

170 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

sparse_matrix(wire_order=None)
Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

See also:

compute_sparse_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

terms()

Representation of the operator as a linear combination of other operators.

𝑂 =
∑︁
𝑖

𝑐𝑖𝑂𝑖

A TermsUndefinedError is raised if no representation by terms is defined.

Returns
list of coefficients 𝑐𝑖 and list of operations 𝑂𝑖

Return type
tuple[list[tensor_like or float], list[.Operation]]

static validate_subspace(subspace)
Validate the subspace for qutrit operations.

This method determines whether a given subspace for qutrit operations is defined correctly or not. If not,
a ValueError is thrown.

Parameters
subspace (tuple[int]) – Subspace to check for correctness

PSWAP

class PSWAP(phi, wires)
Bases: Operation

Phase-SWAP gate.

PSWAP(𝜑) =

⎡⎢⎢⎣
1 0 0 0
0 0 𝑒𝑖𝜑 0
0 𝑒𝑖𝜑 0 0
0 0 0 1

⎤⎥⎥⎦ .
Details:

• Number of wires: 2

2.7. pennylane-braket 171

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

• Number of parameters: 1

• Gradient recipe:
𝑑

𝑑𝜑
PSWAP(𝜑) =

1

2
[PSWAP(𝜑+ 𝜋/2)− PSWAP(𝜑− 𝜋/2)]

Parameters

• phi (float) – the phase angle

• wires (int) – the subsystem the gate acts on

• id (str or None) – String representing the operation (optional)

arithmetic_depth Arithmetic depth of the operator.
basis The basis of an operation, or for controlled gates, of

the target operation.
batch_size Batch size of the operator if it is used with broad-

casted parameters.
control_wires Control wires of the operator.
grad_method

grad_recipe Gradient recipe for the parameter-shift method.
has_adjoint

has_decomposition

has_diagonalizing_gates

has_generator

has_matrix

hash Integer hash that uniquely represents the operator.
hyperparameters Dictionary of non-trainable variables that this opera-

tion depends on.
id Custom string to label a specific operator instance.
is_hermitian This property determines if an operator is hermitian.
name String for the name of the operator.
ndim_params Number of dimensions per trainable parameter of the

operator.
num_params

num_wires Number of wires the operator acts on.
parameter_frequencies Returns the frequencies for each operator parame-

ter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

parameters Trainable parameters that the operator depends on.
pauli_rep A PauliSentence representation of the Operator, or

None if it doesn't have one.
wires Wires that the operator acts on.

arithmetic_depth

Arithmetic depth of the operator.

172 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

basis

The basis of an operation, or for controlled gates, of the target operation. If not None, should take a value
of "X", "Y", or "Z".

For example, X and CNOT have basis = "X", whereas ControlledPhaseShift and RZ have basis =
"Z".

Type
str or None

batch_size

Batch size of the operator if it is used with broadcasted parameters.

The batch_size is determined based on ndim_params and the provided parameters for the operator. If
(some of) the latter have an additional dimension, and this dimension has the same size for all parameters,
its size is the batch size of the operator. If no parameter has an additional dimension, the batch size is None.

Returns
Size of the parameter broadcasting dimension if present, else None.

Return type
int or None

control_wires

Control wires of the operator.

For operations that are not controlled, this is an empty Wires object of length 0.

Returns
The control wires of the operation.

Return type
Wires

grad_method = 'A'

grad_recipe = ([[0.5, 1, 1.5707963267948966], [-0.5, 1, -1.5707963267948966]],)

Gradient recipe for the parameter-shift method.

This is a tuple with one nested list per operation parameter. For parameter 𝜑𝑘, the nested list contains
elements of the form [𝑐𝑖, 𝑎𝑖, 𝑠𝑖] where 𝑖 is the index of the term, resulting in a gradient recipe of

𝜕

𝜕𝜑𝑘
𝑓 =

∑︁
𝑖

𝑐𝑖𝑓(𝑎𝑖𝜑𝑘 + 𝑠𝑖).

If None, the default gradient recipe containing the two terms [𝑐0, 𝑎0, 𝑠0] = [1/2, 1, 𝜋/2] and [𝑐1, 𝑎1, 𝑠1] =
[−1/2, 1,−𝜋/2] is assumed for every parameter.

Type
tuple(Union(list[list[float]], None)) or None

has_adjoint = True

has_decomposition = True

has_diagonalizing_gates = False

has_generator = False

has_matrix = True

2.7. pennylane-braket 173

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

hash

Integer hash that uniquely represents the operator.

Type
int

hyperparameters

Dictionary of non-trainable variables that this operation depends on.

Type
dict

id

Custom string to label a specific operator instance.

is_hermitian

This property determines if an operator is hermitian.

name

String for the name of the operator.

ndim_params

Number of dimensions per trainable parameter of the operator.

By default, this property returns the numbers of dimensions of the parameters used for the operator creation.
If the parameter sizes for an operator subclass are fixed, this property can be overwritten to return the fixed
value.

Returns
Number of dimensions for each trainable parameter.

Return type
tuple

num_params = 1

num_wires = 2

Number of wires the operator acts on.

parameter_frequencies

Returns the frequencies for each operator parameter with respect to an expectation value of the form
⟨𝜓|𝑈(p)†�̂�𝑈(p)|𝜓⟩.

These frequencies encode the behaviour of the operator 𝑈(p) on the value of the expectation value as the
parameters are modified. For more details, please see the pennylane.fourier module.

Returns
Tuple of frequencies for each parameter. Note that only non-negative frequency values are
returned.

Return type
list[tuple[int or float]]

Example

>>> op = qml.CRot(0.4, 0.1, 0.3, wires=[0, 1])
>>> op.parameter_frequencies
[(0.5, 1), (0.5, 1), (0.5, 1)]

For operators that define a generator, the parameter frequencies are directly related to the eigenvalues of
the generator:

174 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

>>> op = qml.ControlledPhaseShift(0.1, wires=[0, 1])
>>> op.parameter_frequencies
[(1,)]
>>> gen = qml.generator(op, format="observable")
>>> gen_eigvals = qml.eigvals(gen)
>>> qml.gradients.eigvals_to_frequencies(tuple(gen_eigvals))
(1.0,)

For more details on this relationship, see eigvals_to_frequencies().

parameters

Trainable parameters that the operator depends on.

pauli_rep

A PauliSentence representation of the Operator, or None if it doesn’t have one.

wires

Wires that the operator acts on.

Returns
wires

Return type
Wires

2.7. pennylane-braket 175

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

adjoint() Create an operation that is the adjoint of this one.
compute_decomposition(phi, wires) Representation of the operator as a product of other

operators (static method).
compute_diagonalizing_gates(*params, wires,
...)

Sequence of gates that diagonalize the operator in the
computational basis (static method).

compute_eigvals(*params, **hyperparams) Eigenvalues of the operator in the computational ba-
sis (static method).

compute_matrix(phi) Representation of the operator as a canonical matrix
in the computational basis (static method).

compute_sparse_matrix(*params, **hyper-
params)

Representation of the operator as a sparse matrix in
the computational basis (static method).

decomposition() Representation of the operator as a product of other
operators.

diagonalizing_gates() Sequence of gates that diagonalize the operator in the
computational basis.

eigvals() Eigenvalues of the operator in the computational ba-
sis.

expand() Returns a tape that contains the decomposition of the
operator.

generator() Generator of an operator that is in single-parameter-
form.

label([decimals, base_label, cache]) A customizable string representation of the operator.
map_wires(wire_map) Returns a copy of the current operator with its wires

changed according to the given wire map.
matrix([wire_order]) Representation of the operator as a matrix in the com-

putational basis.
pow(z) A list of new operators equal to this one raised to the

given power.
queue([context]) Append the operator to the Operator queue.
simplify() Reduce the depth of nested operators to the minimum.
single_qubit_rot_angles() The parameters required to implement a single-qubit

gate as an equivalent Rot gate, up to a global phase.
sparse_matrix([wire_order]) Representation of the operator as a sparse matrix in

the computational basis.
terms() Representation of the operator as a linear combina-

tion of other operators.
validate_subspace(subspace) Validate the subspace for qutrit operations.

adjoint()

Create an operation that is the adjoint of this one.

Adjointed operations are the conjugated and transposed version of the original operation. Adjointed ops
are equivalent to the inverted operation for unitary gates.

Returns
The adjointed operation.

static compute_decomposition(phi, wires)
Representation of the operator as a product of other operators (static method).

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛.

Note: Operations making up the decomposition should be queued within the compute_decomposition

176 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

method.

See also:

decomposition().

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
decomposition of the operator

Return type
list[Operator]

static compute_diagonalizing_gates(*params, wires, **hyperparams)
Sequence of gates that diagonalize the operator in the computational basis (static method).

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

See also:

diagonalizing_gates().

Parameters

• params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• wires (Iterable[Any], Wires) – wires that the operator acts on

• hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
list of diagonalizing gates

Return type
list[.Operator]

static compute_eigvals(*params, **hyperparams)
Eigenvalues of the operator in the computational basis (static method).

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

2.7. pennylane-braket 177

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

See also:

Operator.eigvals() and qml.eigvals()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
eigenvalues

Return type
tensor_like

static compute_matrix(phi)
Representation of the operator as a canonical matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

Operator.matrix() and qml.matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
matrix representation

Return type
tensor_like

static compute_sparse_matrix(*params, **hyperparams)
Representation of the operator as a sparse matrix in the computational basis (static method).

The canonical matrix is the textbook matrix representation that does not consider wires. Implicitly, this
assumes that the wires of the operator correspond to the global wire order.

See also:

sparse_matrix()

Parameters

• *params (list) – trainable parameters of the operator, as stored in the parameters at-
tribute

• **hyperparams (dict) – non-trainable hyperparameters of the operator, as stored in the
hyperparameters attribute

Returns
sparse matrix representation

178 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Return type
scipy.sparse._csr.csr_matrix

decomposition()

Representation of the operator as a product of other operators.

𝑂 = 𝑂1𝑂2 . . . 𝑂𝑛

A DecompositionUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_decomposition().

Returns
decomposition of the operator

Return type
list[Operator]

diagonalizing_gates()

Sequence of gates that diagonalize the operator in the computational basis.

Given the eigendecomposition 𝑂 = 𝑈Σ𝑈† where Σ is a diagonal matrix containing the eigenvalues, the
sequence of diagonalizing gates implements the unitary 𝑈†.

The diagonalizing gates rotate the state into the eigenbasis of the operator.

A DiagGatesUndefinedError is raised if no representation by decomposition is defined.

See also:

compute_diagonalizing_gates().

Returns
a list of operators

Return type
list[.Operator] or None

eigvals()

Eigenvalues of the operator in the computational basis.

If diagonalizing_gates are specified and implement a unitary 𝑈†, the operator can be reconstructed as

𝑂 = 𝑈Σ𝑈†,

where Σ is the diagonal matrix containing the eigenvalues.

Otherwise, no particular order for the eigenvalues is guaranteed.

Note: When eigenvalues are not explicitly defined, they are computed automatically from the matrix
representation. Currently, this computation is not differentiable.

A EigvalsUndefinedError is raised if the eigenvalues have not been defined and cannot be inferred from
the matrix representation.

See also:

compute_eigvals()

2.7. pennylane-braket 179

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Returns
eigenvalues

Return type
tensor_like

expand()

Returns a tape that contains the decomposition of the operator.

Returns
quantum tape

Return type
.QuantumTape

generator()

Generator of an operator that is in single-parameter-form.

For example, for operator

𝑈(𝜑) = 𝑒𝑖𝜑(0.5𝑌+𝑍⊗𝑋)

we get the generator

>>> U.generator()
(0.5) [Y0]

+ (1.0) [Z0 X1]

The generator may also be provided in the form of a dense or sparse Hamiltonian (using Hermitian and
SparseHamiltonian respectively).

The default value to return is None, indicating that the operation has no defined generator.

label(decimals=None, base_label=None, cache=None)
A customizable string representation of the operator.

Parameters

• decimals=None (int) – If None, no parameters are included. Else, specifies how to round
the parameters.

• base_label=None (str) – overwrite the non-parameter component of the label

• cache=None (dict) – dictionary that carries information between label calls in the same
drawing

Returns
label to use in drawings

Return type
str

Example:

>>> op = qml.RX(1.23456, wires=0)
>>> op.label()
"RX"
>>> op.label(base_label="my_label")
"my_label"
>>> op = qml.RX(1.23456, wires=0, id="test_data")

(continues on next page)

180 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

(continued from previous page)

>>> op.label()
"RX("test_data")"
>>> op.label(decimals=2)
"RX\n(1.23,"test_data")"
>>> op.label(base_label="my_label")
"my_label("test_data")"
>>> op.label(decimals=2, base_label="my_label")
"my_label\n(1.23,"test_data")"

If the operation has a matrix-valued parameter and a cache dictionary is provided, unique matrices will be
cached in the 'matrices' key list. The label will contain the index of the matrix in the 'matrices' list.

>>> op2 = qml.QubitUnitary(np.eye(2), wires=0)
>>> cache = {'matrices': []}
>>> op2.label(cache=cache)
'U(M0)'
>>> cache['matrices']
[tensor([[1., 0.],
[0., 1.]], requires_grad=True)]
>>> op3 = qml.QubitUnitary(np.eye(4), wires=(0,1))
>>> op3.label(cache=cache)
'U(M1)'
>>> cache['matrices']
[tensor([[1., 0.],

[0., 1.]], requires_grad=True),
tensor([[1., 0., 0., 0.],

[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], requires_grad=True)]

map_wires(wire_map: dict)
Returns a copy of the current operator with its wires changed according to the given wire map.

Parameters
wire_map (dict) – dictionary containing the old wires as keys and the new wires as values

Returns
new operator

Return type
.Operator

matrix(wire_order=None)
Representation of the operator as a matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

If the matrix depends on trainable parameters, the result will be cast in the same autodifferentiation frame-
work as the parameters.

A MatrixUndefinedError is raised if the matrix representation has not been defined.

See also:

compute_matrix()

2.7. pennylane-braket 181

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
matrix representation

Return type
tensor_like

pow(z)→ List[Operator]
A list of new operators equal to this one raised to the given power.

Parameters
z (float) – exponent for the operator

Returns
list[Operator]

queue(context=<class 'pennylane.queuing.QueuingManager'>)
Append the operator to the Operator queue.

simplify()→ Operator
Reduce the depth of nested operators to the minimum.

Returns
simplified operator

Return type
.Operator

single_qubit_rot_angles()

The parameters required to implement a single-qubit gate as an equivalent Rot gate, up to a global phase.

Returns
A list of values [𝜑, 𝜃, 𝜔] such that𝑅𝑍(𝜔)𝑅𝑌 (𝜃)𝑅𝑍(𝜑) is equivalent to the original operation.

Return type
tuple[float, float, float]

sparse_matrix(wire_order=None)
Representation of the operator as a sparse matrix in the computational basis.

If wire_order is provided, the numerical representation considers the position of the operator’s wires in
the global wire order. Otherwise, the wire order defaults to the operator’s wires.

A SparseMatrixUndefinedError is raised if the sparse matrix representation has not been defined.

See also:

compute_sparse_matrix()

Parameters
wire_order (Iterable) – global wire order, must contain all wire labels from the operator’s
wires

Returns
sparse matrix representation

Return type
scipy.sparse._csr.csr_matrix

182 Chapter 2. Tutorials

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

terms()

Representation of the operator as a linear combination of other operators.

𝑂 =
∑︁
𝑖

𝑐𝑖𝑂𝑖

A TermsUndefinedError is raised if no representation by terms is defined.

Returns
list of coefficients 𝑐𝑖 and list of operations 𝑂𝑖

Return type
tuple[list[tensor_like or float], list[.Operation]]

static validate_subspace(subspace)
Validate the subspace for qutrit operations.

This method determines whether a given subspace for qutrit operations is defined correctly or not. If not,
a ValueError is thrown.

Parameters
subspace (tuple[int]) – Subspace to check for correctness

2.7.2 Class Inheritance Diagram

2.7. pennylane-braket 183

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

184 Chapter 2. Tutorials

PYTHON MODULE INDEX

b
braket.pennylane_plugin, 16

185

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

186 Python Module Index

INDEX

A
AAMS (class in braket.pennylane_plugin), 16
access_state() (BraketAwsAhsDevice method), 34
access_state() (BraketAwsQubitDevice method), 54
access_state() (BraketLocalAhsDevice method), 73
access_state() (BraketLocalQubitDevice method), 92
active_wires() (BraketAwsAhsDevice static method),

34
active_wires() (BraketAwsQubitDevice static

method), 54
active_wires() (BraketLocalAhsDevice static

method), 73
active_wires() (BraketLocalQubitDevice static

method), 92
adjoint() (AAMS method), 20
adjoint() (CPhaseShift00 method), 108
adjoint() (CPhaseShift01 method), 119
adjoint() (CPhaseShift10 method), 130
adjoint() (GPi method), 141
adjoint() (GPi2 method), 153
adjoint() (MS method), 164
adjoint() (PSWAP method), 176
adjoint_jacobian() (BraketAwsAhsDevice method),

35
adjoint_jacobian() (BraketAwsQubitDevice method),

55
adjoint_jacobian() (BraketLocalAhsDevice method),

74
adjoint_jacobian() (BraketLocalQubitDevice

method), 92
ahs_program (BraketAwsAhsDevice attribute), 29
ahs_program (BraketLocalAhsDevice attribute), 68
analytic (BraketAwsAhsDevice attribute), 29
analytic (BraketAwsQubitDevice attribute), 49
analytic (BraketLocalAhsDevice attribute), 68
analytic (BraketLocalQubitDevice attribute), 87
analytic_probability() (BraketAwsAhsDevice

method), 35
analytic_probability() (BraketAwsQubitDevice

method), 55
analytic_probability() (BraketLocalAhsDevice

method), 74

analytic_probability() (BraketLocalQubitDevice
method), 93

apply() (BraketAwsAhsDevice method), 36
apply() (BraketAwsQubitDevice method), 56
apply() (BraketLocalAhsDevice method), 75
apply() (BraketLocalQubitDevice method), 93
arithmetic_depth (AAMS attribute), 17
arithmetic_depth (CPhaseShift00 attribute), 105
arithmetic_depth (CPhaseShift01 attribute), 116
arithmetic_depth (CPhaseShift10 attribute), 127
arithmetic_depth (GPi attribute), 138
arithmetic_depth (GPi2 attribute), 149
arithmetic_depth (MS attribute), 161
arithmetic_depth (PSWAP attribute), 172
author (BraketAwsAhsDevice attribute), 29
author (BraketAwsQubitDevice attribute), 49
author (BraketLocalAhsDevice attribute), 68
author (BraketLocalQubitDevice attribute), 87

B
basis (AAMS attribute), 17
basis (CPhaseShift00 attribute), 105
basis (CPhaseShift01 attribute), 116
basis (CPhaseShift10 attribute), 127
basis (GPi attribute), 138
basis (GPi2 attribute), 149
basis (MS attribute), 161
basis (PSWAP attribute), 172
batch_execute() (BraketAwsAhsDevice method), 36
batch_execute() (BraketAwsQubitDevice method), 56
batch_execute() (BraketLocalAhsDevice method), 75
batch_execute() (BraketLocalQubitDevice method),

93
batch_size (AAMS attribute), 17
batch_size (CPhaseShift00 attribute), 106
batch_size (CPhaseShift01 attribute), 116
batch_size (CPhaseShift10 attribute), 127
batch_size (GPi attribute), 138
batch_size (GPi2 attribute), 150
batch_size (MS attribute), 161
batch_size (PSWAP attribute), 173
batch_transform() (BraketAwsAhsDevice method), 36

187

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

batch_transform() (BraketAwsQubitDevice method),
56

batch_transform() (BraketLocalAhsDevice method),
75

batch_transform() (BraketLocalQubitDevice
method), 94

braket.pennylane_plugin
module, 15

BraketAwsAhsDevice (class in
braket.pennylane_plugin), 27

BraketAwsQubitDevice (class in
braket.pennylane_plugin), 47

BraketLocalAhsDevice (class in
braket.pennylane_plugin), 67

BraketLocalQubitDevice (class in
braket.pennylane_plugin), 86

C
capabilities() (BraketAwsAhsDevice class method),

36
capabilities() (BraketAwsQubitDevice method), 56
capabilities() (BraketLocalAhsDevice class method),

75
capabilities() (BraketLocalQubitDevice class

method), 94
check_validity() (BraketAwsAhsDevice method), 37
check_validity() (BraketAwsQubitDevice method),

56
check_validity() (BraketLocalAhsDevice method),

76
check_validity() (BraketLocalQubitDevice method),

94
circuit (BraketAwsQubitDevice attribute), 49
circuit (BraketLocalQubitDevice attribute), 87
circuit_hash (BraketAwsAhsDevice attribute), 30
circuit_hash (BraketAwsQubitDevice attribute), 50
circuit_hash (BraketLocalAhsDevice attribute), 68
circuit_hash (BraketLocalQubitDevice attribute), 87
classical_shadow() (BraketAwsAhsDevice method),

37
classical_shadow() (BraketAwsQubitDevice method),

57
classical_shadow() (BraketLocalAhsDevice method),

76
classical_shadow() (BraketLocalQubitDevice

method), 95
compute_decomposition() (AAMS static method), 21
compute_decomposition() (CPhaseShift00 static

method), 108
compute_decomposition() (CPhaseShift01 static

method), 119
compute_decomposition() (CPhaseShift10 static

method), 130
compute_decomposition() (GPi static method), 142

compute_decomposition() (GPi2 static method), 153
compute_decomposition() (MS static method), 165
compute_decomposition() (PSWAP static method),

176
compute_diagonalizing_gates() (AAMS static

method), 21
compute_diagonalizing_gates() (CPhaseShift00

static method), 109
compute_diagonalizing_gates() (CPhaseShift01

static method), 120
compute_diagonalizing_gates() (CPhaseShift10

static method), 131
compute_diagonalizing_gates() (GPi static

method), 142
compute_diagonalizing_gates() (GPi2 static

method), 154
compute_diagonalizing_gates() (MS static

method), 165
compute_diagonalizing_gates() (PSWAP static

method), 177
compute_eigvals() (AAMS static method), 22
compute_eigvals() (CPhaseShift00 static method),

109
compute_eigvals() (CPhaseShift01 static method),

120
compute_eigvals() (CPhaseShift10 static method),

131
compute_eigvals() (GPi static method), 143
compute_eigvals() (GPi2 static method), 154
compute_eigvals() (MS static method), 166
compute_eigvals() (PSWAP static method), 177
compute_matrix() (AAMS static method), 22
compute_matrix() (CPhaseShift00 static method), 110
compute_matrix() (CPhaseShift01 static method), 121
compute_matrix() (CPhaseShift10 static method), 132
compute_matrix() (GPi static method), 143
compute_matrix() (GPi2 static method), 155
compute_matrix() (MS static method), 166
compute_matrix() (PSWAP static method), 178
compute_sparse_matrix() (AAMS static method), 22
compute_sparse_matrix() (CPhaseShift00 static

method), 110
compute_sparse_matrix() (CPhaseShift01 static

method), 121
compute_sparse_matrix() (CPhaseShift10 static

method), 132
compute_sparse_matrix() (GPi static method), 143
compute_sparse_matrix() (GPi2 static method), 155
compute_sparse_matrix() (MS static method), 166
compute_sparse_matrix() (PSWAP static method),

178
control_wires (AAMS attribute), 18
control_wires (CPhaseShift00 attribute), 106
control_wires (CPhaseShift01 attribute), 117

188 Index

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

control_wires (CPhaseShift10 attribute), 128
control_wires (GPi attribute), 139
control_wires (GPi2 attribute), 150
control_wires (MS attribute), 162
control_wires (PSWAP attribute), 173
CPhaseShift00 (class in braket.pennylane_plugin), 104
CPhaseShift01 (class in braket.pennylane_plugin), 115
CPhaseShift10 (class in braket.pennylane_plugin), 126
create_ahs_program() (BraketAwsAhsDevice

method), 38
create_ahs_program() (BraketLocalAhsDevice

method), 77
custom_expand() (BraketAwsAhsDevice method), 38
custom_expand() (BraketAwsQubitDevice method), 57
custom_expand() (BraketLocalAhsDevice method), 77
custom_expand() (BraketLocalQubitDevice method),

95

D
decomposition() (AAMS method), 23
decomposition() (CPhaseShift00 method), 111
decomposition() (CPhaseShift01 method), 122
decomposition() (CPhaseShift10 method), 133
decomposition() (GPi method), 144
decomposition() (GPi2 method), 156
decomposition() (MS method), 167
decomposition() (PSWAP method), 179
default_expand_fn() (BraketAwsAhsDevice method),

38
default_expand_fn() (BraketAwsQubitDevice

method), 58
default_expand_fn() (BraketLocalAhsDevice

method), 77
default_expand_fn() (BraketLocalQubitDevice

method), 95
define_wire_map() (BraketAwsAhsDevice method), 39
define_wire_map() (BraketAwsQubitDevice method),

58
define_wire_map() (BraketLocalAhsDevice method),

78
define_wire_map() (BraketLocalQubitDevice

method), 96
density_matrix() (BraketAwsAhsDevice method), 39
density_matrix() (BraketAwsQubitDevice method),

59
density_matrix() (BraketLocalAhsDevice method),

78
density_matrix() (BraketLocalQubitDevice method),

96
diagonalizing_gates() (AAMS method), 23
diagonalizing_gates() (CPhaseShift00 method), 111
diagonalizing_gates() (CPhaseShift01 method), 122
diagonalizing_gates() (CPhaseShift10 method), 133
diagonalizing_gates() (GPi method), 144

diagonalizing_gates() (GPi2 method), 156
diagonalizing_gates() (MS method), 167
diagonalizing_gates() (PSWAP method), 179

E
eigvals() (AAMS method), 23
eigvals() (CPhaseShift00 method), 111
eigvals() (CPhaseShift01 method), 122
eigvals() (CPhaseShift10 method), 133
eigvals() (GPi method), 144
eigvals() (GPi2 method), 156
eigvals() (MS method), 167
eigvals() (PSWAP method), 179
estimate_probability() (BraketAwsAhsDevice

method), 39
estimate_probability() (BraketAwsQubitDevice

method), 59
estimate_probability() (BraketLocalAhsDevice

method), 78
estimate_probability() (BraketLocalQubitDevice

method), 97
execute() (BraketAwsAhsDevice method), 40
execute() (BraketAwsQubitDevice method), 59
execute() (BraketLocalAhsDevice method), 79
execute() (BraketLocalQubitDevice method), 97
execute_and_gradients() (BraketAwsAhsDevice

method), 40
execute_and_gradients() (BraketAwsQubitDevice

method), 60
execute_and_gradients() (BraketLocalAhsDevice

method), 79
execute_and_gradients() (BraketLocalQubitDevice

method), 97
execution_context() (BraketAwsAhsDevice method),

40
execution_context() (BraketAwsQubitDevice

method), 60
execution_context() (BraketLocalAhsDevice

method), 79
execution_context() (BraketLocalQubitDevice

method), 98
expand() (AAMS method), 24
expand() (CPhaseShift00 method), 112
expand() (CPhaseShift01 method), 123
expand() (CPhaseShift10 method), 134
expand() (GPi method), 145
expand() (GPi2 method), 157
expand() (MS method), 168
expand() (PSWAP method), 180
expand_fn() (BraketAwsAhsDevice method), 40
expand_fn() (BraketAwsQubitDevice method), 60
expand_fn() (BraketLocalAhsDevice method), 79
expand_fn() (BraketLocalQubitDevice method), 98
expval() (BraketAwsAhsDevice method), 41

Index 189

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

expval() (BraketAwsQubitDevice method), 60
expval() (BraketLocalAhsDevice method), 80
expval() (BraketLocalQubitDevice method), 98

G
generate_basis_states() (BraketAwsAhsDevice

static method), 41
generate_basis_states() (BraketAwsQubitDevice

static method), 60
generate_basis_states() (BraketLocalAhsDevice

static method), 80
generate_basis_states() (BraketLocalQubitDevice

static method), 98
generate_samples() (BraketAwsAhsDevice method),

41
generate_samples() (BraketAwsQubitDevice method),

61
generate_samples() (BraketLocalAhsDevice method),

80
generate_samples() (BraketLocalQubitDevice

method), 99
generator() (AAMS method), 24
generator() (CPhaseShift00 method), 112
generator() (CPhaseShift01 method), 123
generator() (CPhaseShift10 method), 134
generator() (GPi method), 145
generator() (GPi2 method), 157
generator() (MS method), 168
generator() (PSWAP method), 180
GPi (class in braket.pennylane_plugin), 137
GPi2 (class in braket.pennylane_plugin), 148
grad_method (AAMS attribute), 18
grad_method (CPhaseShift00 attribute), 106
grad_method (CPhaseShift01 attribute), 117
grad_method (CPhaseShift10 attribute), 128
grad_method (GPi attribute), 139
grad_method (GPi2 attribute), 150
grad_method (MS attribute), 162
grad_method (PSWAP attribute), 173
grad_recipe (AAMS attribute), 18
grad_recipe (CPhaseShift00 attribute), 106
grad_recipe (CPhaseShift01 attribute), 117
grad_recipe (CPhaseShift10 attribute), 128
grad_recipe (GPi attribute), 139
grad_recipe (GPi2 attribute), 150
grad_recipe (MS attribute), 162
grad_recipe (PSWAP attribute), 173
gradients() (BraketAwsAhsDevice method), 42
gradients() (BraketAwsQubitDevice method), 61
gradients() (BraketLocalAhsDevice method), 81
gradients() (BraketLocalQubitDevice method), 99

H
hardware_capabilities (BraketAwsAhsDevice

attribute), 30
has_adjoint (AAMS attribute), 18
has_adjoint (CPhaseShift00 attribute), 106
has_adjoint (CPhaseShift01 attribute), 117
has_adjoint (CPhaseShift10 attribute), 128
has_adjoint (GPi attribute), 139
has_adjoint (GPi2 attribute), 150
has_adjoint (MS attribute), 162
has_adjoint (PSWAP attribute), 173
has_decomposition (AAMS attribute), 18
has_decomposition (CPhaseShift00 attribute), 106
has_decomposition (CPhaseShift01 attribute), 117
has_decomposition (CPhaseShift10 attribute), 128
has_decomposition (GPi attribute), 139
has_decomposition (GPi2 attribute), 150
has_decomposition (MS attribute), 162
has_decomposition (PSWAP attribute), 173
has_diagonalizing_gates (AAMS attribute), 18
has_diagonalizing_gates (CPhaseShift00 attribute),

106
has_diagonalizing_gates (CPhaseShift01 attribute),

117
has_diagonalizing_gates (CPhaseShift10 attribute),

128
has_diagonalizing_gates (GPi attribute), 139
has_diagonalizing_gates (GPi2 attribute), 150
has_diagonalizing_gates (MS attribute), 162
has_diagonalizing_gates (PSWAP attribute), 173
has_generator (AAMS attribute), 18
has_generator (CPhaseShift00 attribute), 106
has_generator (CPhaseShift01 attribute), 117
has_generator (CPhaseShift10 attribute), 128
has_generator (GPi attribute), 139
has_generator (GPi2 attribute), 150
has_generator (MS attribute), 162
has_generator (PSWAP attribute), 173
has_matrix (AAMS attribute), 18
has_matrix (CPhaseShift00 attribute), 106
has_matrix (CPhaseShift01 attribute), 117
has_matrix (CPhaseShift10 attribute), 128
has_matrix (GPi attribute), 139
has_matrix (GPi2 attribute), 150
has_matrix (MS attribute), 162
has_matrix (PSWAP attribute), 173
hash (AAMS attribute), 18
hash (CPhaseShift00 attribute), 106
hash (CPhaseShift01 attribute), 117
hash (CPhaseShift10 attribute), 128
hash (GPi attribute), 139
hash (GPi2 attribute), 150
hash (MS attribute), 162
hash (PSWAP attribute), 173
hyperparameters (AAMS attribute), 18
hyperparameters (CPhaseShift00 attribute), 106

190 Index

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

hyperparameters (CPhaseShift01 attribute), 117
hyperparameters (CPhaseShift10 attribute), 128
hyperparameters (GPi attribute), 139
hyperparameters (GPi2 attribute), 150
hyperparameters (MS attribute), 162
hyperparameters (PSWAP attribute), 174

I
id (AAMS attribute), 18
id (CPhaseShift00 attribute), 107
id (CPhaseShift01 attribute), 117
id (CPhaseShift10 attribute), 128
id (GPi attribute), 139
id (GPi2 attribute), 151
id (MS attribute), 162
id (PSWAP attribute), 174
is_hermitian (AAMS attribute), 19
is_hermitian (CPhaseShift00 attribute), 107
is_hermitian (CPhaseShift01 attribute), 117
is_hermitian (CPhaseShift10 attribute), 128
is_hermitian (GPi attribute), 140
is_hermitian (GPi2 attribute), 151
is_hermitian (MS attribute), 163
is_hermitian (PSWAP attribute), 174

L
label() (AAMS method), 24
label() (CPhaseShift00 method), 112
label() (CPhaseShift01 method), 123
label() (CPhaseShift10 method), 134
label() (GPi method), 145
label() (GPi2 method), 157
label() (MS method), 168
label() (PSWAP method), 180

M
map_wires() (AAMS method), 25
map_wires() (BraketAwsAhsDevice method), 42
map_wires() (BraketAwsQubitDevice method), 61
map_wires() (BraketLocalAhsDevice method), 81
map_wires() (BraketLocalQubitDevice method), 99
map_wires() (CPhaseShift00 method), 113
map_wires() (CPhaseShift01 method), 124
map_wires() (CPhaseShift10 method), 135
map_wires() (GPi method), 146
map_wires() (GPi2 method), 158
map_wires() (MS method), 169
map_wires() (PSWAP method), 181
marginal_prob() (BraketAwsAhsDevice method), 42
marginal_prob() (BraketAwsQubitDevice method), 62
marginal_prob() (BraketLocalAhsDevice method), 81
marginal_prob() (BraketLocalQubitDevice method),

100
matrix() (AAMS method), 26

matrix() (CPhaseShift00 method), 113
matrix() (CPhaseShift01 method), 124
matrix() (CPhaseShift10 method), 135
matrix() (GPi method), 147
matrix() (GPi2 method), 158
matrix() (MS method), 170
matrix() (PSWAP method), 181
measurement_map (BraketAwsAhsDevice attribute), 30
measurement_map (BraketAwsQubitDevice attribute),

50
measurement_map (BraketLocalAhsDevice attribute), 69
measurement_map (BraketLocalQubitDevice attribute),

87
module

braket.pennylane_plugin, 15
MS (class in braket.pennylane_plugin), 160
mutual_info() (BraketAwsAhsDevice method), 43
mutual_info() (BraketAwsQubitDevice method), 62
mutual_info() (BraketLocalAhsDevice method), 82
mutual_info() (BraketLocalQubitDevice method), 100

N
name (AAMS attribute), 19
name (BraketAwsAhsDevice attribute), 30
name (BraketAwsQubitDevice attribute), 50
name (BraketLocalAhsDevice attribute), 69
name (BraketLocalQubitDevice attribute), 88
name (CPhaseShift00 attribute), 107
name (CPhaseShift01 attribute), 118
name (CPhaseShift10 attribute), 129
name (GPi attribute), 140
name (GPi2 attribute), 151
name (MS attribute), 163
name (PSWAP attribute), 174
ndim_params (AAMS attribute), 19
ndim_params (CPhaseShift00 attribute), 107
ndim_params (CPhaseShift01 attribute), 118
ndim_params (CPhaseShift10 attribute), 129
ndim_params (GPi attribute), 140
ndim_params (GPi2 attribute), 151
ndim_params (MS attribute), 163
ndim_params (PSWAP attribute), 174
num_executions (BraketAwsAhsDevice attribute), 30
num_executions (BraketAwsQubitDevice attribute), 50
num_executions (BraketLocalAhsDevice attribute), 69
num_executions (BraketLocalQubitDevice attribute),

88
num_params (AAMS attribute), 19
num_params (CPhaseShift00 attribute), 107
num_params (CPhaseShift01 attribute), 118
num_params (CPhaseShift10 attribute), 129
num_params (GPi attribute), 140
num_params (GPi2 attribute), 151
num_params (MS attribute), 163

Index 191

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

num_params (PSWAP attribute), 174
num_wires (AAMS attribute), 19
num_wires (CPhaseShift00 attribute), 107
num_wires (CPhaseShift01 attribute), 118
num_wires (CPhaseShift10 attribute), 129
num_wires (GPi attribute), 140
num_wires (GPi2 attribute), 151
num_wires (MS attribute), 163
num_wires (PSWAP attribute), 174

O
obs_queue (BraketAwsAhsDevice attribute), 30
obs_queue (BraketAwsQubitDevice attribute), 50
obs_queue (BraketLocalAhsDevice attribute), 69
obs_queue (BraketLocalQubitDevice attribute), 88
observables (BraketAwsAhsDevice attribute), 31
observables (BraketAwsQubitDevice attribute), 51
observables (BraketLocalAhsDevice attribute), 70
observables (BraketLocalQubitDevice attribute), 89
op_queue (BraketAwsAhsDevice attribute), 31
op_queue (BraketAwsQubitDevice attribute), 51
op_queue (BraketLocalAhsDevice attribute), 70
op_queue (BraketLocalQubitDevice attribute), 89
operations (BraketAwsAhsDevice attribute), 31
operations (BraketAwsQubitDevice attribute), 51
operations (BraketLocalAhsDevice attribute), 70
operations (BraketLocalQubitDevice attribute), 89
order_wires() (BraketAwsAhsDevice method), 43
order_wires() (BraketAwsQubitDevice method), 62
order_wires() (BraketLocalAhsDevice method), 82
order_wires() (BraketLocalQubitDevice method), 100

P
parallel (BraketAwsQubitDevice attribute), 51
parameter_frequencies (AAMS attribute), 19
parameter_frequencies (CPhaseShift00 attribute),

107
parameter_frequencies (CPhaseShift01 attribute),

118
parameter_frequencies (CPhaseShift10 attribute),

129
parameter_frequencies (GPi attribute), 140
parameter_frequencies (GPi2 attribute), 151
parameter_frequencies (MS attribute), 163
parameter_frequencies (PSWAP attribute), 174
parameters (AAMS attribute), 19
parameters (BraketAwsAhsDevice attribute), 31
parameters (BraketAwsQubitDevice attribute), 51
parameters (BraketLocalAhsDevice attribute), 70
parameters (BraketLocalQubitDevice attribute), 89
parameters (CPhaseShift00 attribute), 107
parameters (CPhaseShift01 attribute), 118
parameters (CPhaseShift10 attribute), 129
parameters (GPi attribute), 140

parameters (GPi2 attribute), 152
parameters (MS attribute), 163
parameters (PSWAP attribute), 175
pauli_rep (AAMS attribute), 20
pauli_rep (CPhaseShift00 attribute), 107
pauli_rep (CPhaseShift01 attribute), 118
pauli_rep (CPhaseShift10 attribute), 129
pauli_rep (GPi attribute), 141
pauli_rep (GPi2 attribute), 152
pauli_rep (MS attribute), 164
pauli_rep (PSWAP attribute), 175
pennylane_requires (BraketAwsAhsDevice attribute),

31
pennylane_requires (BraketAwsQubitDevice at-

tribute), 51
pennylane_requires (BraketLocalAhsDevice at-

tribute), 70
pennylane_requires (BraketLocalQubitDevice at-

tribute), 89
post_apply() (BraketAwsAhsDevice method), 43
post_apply() (BraketAwsQubitDevice method), 63
post_apply() (BraketLocalAhsDevice method), 82
post_apply() (BraketLocalQubitDevice method), 101
post_measure() (BraketAwsAhsDevice method), 43
post_measure() (BraketAwsQubitDevice method), 63
post_measure() (BraketLocalAhsDevice method), 82
post_measure() (BraketLocalQubitDevice method),

101
pow() (AAMS method), 26
pow() (CPhaseShift00 method), 114
pow() (CPhaseShift01 method), 125
pow() (CPhaseShift10 method), 136
pow() (GPi method), 147
pow() (GPi2 method), 159
pow() (MS method), 170
pow() (PSWAP method), 182
pre_apply() (BraketAwsAhsDevice method), 43
pre_apply() (BraketAwsQubitDevice method), 63
pre_apply() (BraketLocalAhsDevice method), 82
pre_apply() (BraketLocalQubitDevice method), 101
pre_measure() (BraketAwsAhsDevice method), 43
pre_measure() (BraketAwsQubitDevice method), 63
pre_measure() (BraketLocalAhsDevice method), 82
pre_measure() (BraketLocalQubitDevice method), 101
probability() (BraketAwsAhsDevice method), 43
probability() (BraketAwsQubitDevice method), 63
probability() (BraketLocalAhsDevice method), 82
probability() (BraketLocalQubitDevice method), 101
PSWAP (class in braket.pennylane_plugin), 171
pulse_settings (BraketAwsQubitDevice attribute), 51

Q
queue() (AAMS method), 26
queue() (CPhaseShift00 method), 114

192 Index

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

queue() (CPhaseShift01 method), 125
queue() (CPhaseShift10 method), 136
queue() (GPi method), 147
queue() (GPi2 method), 159
queue() (MS method), 170
queue() (PSWAP method), 182

R
register (BraketAwsAhsDevice attribute), 31
register (BraketLocalAhsDevice attribute), 70
reset() (BraketAwsAhsDevice method), 44
reset() (BraketAwsQubitDevice method), 63
reset() (BraketLocalAhsDevice method), 83
reset() (BraketLocalQubitDevice method), 101
result (BraketAwsAhsDevice attribute), 31
result (BraketLocalAhsDevice attribute), 70

S
sample() (BraketAwsAhsDevice method), 44
sample() (BraketAwsQubitDevice method), 63
sample() (BraketLocalAhsDevice method), 83
sample() (BraketLocalQubitDevice method), 101
sample_basis_states() (BraketAwsAhsDevice

method), 44
sample_basis_states() (BraketAwsQubitDevice

method), 64
sample_basis_states() (BraketLocalAhsDevice

method), 83
sample_basis_states() (BraketLocalQubitDevice

method), 102
settings (BraketAwsAhsDevice attribute), 31
settings (BraketLocalAhsDevice attribute), 70
shadow_expval() (BraketAwsAhsDevice method), 44
shadow_expval() (BraketAwsQubitDevice method), 64
shadow_expval() (BraketLocalAhsDevice method), 83
shadow_expval() (BraketLocalQubitDevice method),

102
short_name (BraketAwsAhsDevice attribute), 31
short_name (BraketAwsQubitDevice attribute), 52
short_name (BraketLocalAhsDevice attribute), 70
short_name (BraketLocalQubitDevice attribute), 89
shot_vec_statistics() (BraketAwsAhsDevice

method), 45
shot_vec_statistics() (BraketAwsQubitDevice

method), 64
shot_vec_statistics() (BraketLocalAhsDevice

method), 84
shot_vec_statistics() (BraketLocalQubitDevice

method), 102
shot_vector (BraketAwsAhsDevice attribute), 32
shot_vector (BraketAwsQubitDevice attribute), 52
shot_vector (BraketLocalAhsDevice attribute), 71
shot_vector (BraketLocalQubitDevice attribute), 89
shots (BraketAwsAhsDevice attribute), 32

shots (BraketAwsQubitDevice attribute), 52
shots (BraketLocalAhsDevice attribute), 71
shots (BraketLocalQubitDevice attribute), 90
simplify() (AAMS method), 26
simplify() (CPhaseShift00 method), 114
simplify() (CPhaseShift01 method), 125
simplify() (CPhaseShift10 method), 136
simplify() (GPi method), 147
simplify() (GPi2 method), 159
simplify() (MS method), 170
simplify() (PSWAP method), 182
single_qubit_rot_angles() (AAMS method), 26
single_qubit_rot_angles() (CPhaseShift00

method), 114
single_qubit_rot_angles() (CPhaseShift01

method), 125
single_qubit_rot_angles() (CPhaseShift10

method), 136
single_qubit_rot_angles() (GPi method), 147
single_qubit_rot_angles() (GPi2 method), 159
single_qubit_rot_angles() (MS method), 170
single_qubit_rot_angles() (PSWAP method), 182
sparse_matrix() (AAMS method), 26
sparse_matrix() (CPhaseShift00 method), 114
sparse_matrix() (CPhaseShift01 method), 125
sparse_matrix() (CPhaseShift10 method), 136
sparse_matrix() (GPi method), 147
sparse_matrix() (GPi2 method), 159
sparse_matrix() (MS method), 170
sparse_matrix() (PSWAP method), 182
state (BraketAwsAhsDevice attribute), 32
state (BraketAwsQubitDevice attribute), 52
state (BraketLocalAhsDevice attribute), 71
state (BraketLocalQubitDevice attribute), 90
states_to_binary() (BraketAwsAhsDevice static

method), 45
states_to_binary() (BraketAwsQubitDevice static

method), 65
states_to_binary() (BraketLocalAhsDevice static

method), 84
states_to_binary() (BraketLocalQubitDevice static

method), 102
statistics() (BraketAwsAhsDevice method), 45
statistics() (BraketAwsQubitDevice method), 65
statistics() (BraketLocalAhsDevice method), 84
statistics() (BraketLocalQubitDevice method), 103
stopping_condition (BraketAwsAhsDevice attribute),

32
stopping_condition (BraketAwsQubitDevice at-

tribute), 52
stopping_condition (BraketLocalAhsDevice at-

tribute), 71
stopping_condition (BraketLocalQubitDevice at-

tribute), 90

Index 193

Amazon Braket PennyLane Plugin Documentation, Release 1.24.2

supports_observable() (BraketAwsAhsDevice
method), 46

supports_observable() (BraketAwsQubitDevice
method), 65

supports_observable() (BraketLocalAhsDevice
method), 85

supports_observable() (BraketLocalQubitDevice
method), 103

supports_operation() (BraketAwsAhsDevice
method), 46

supports_operation() (BraketAwsQubitDevice
method), 65

supports_operation() (BraketLocalAhsDevice
method), 85

supports_operation() (BraketLocalQubitDevice
method), 103

T
task (BraketAwsAhsDevice attribute), 32
task (BraketAwsQubitDevice attribute), 52
task (BraketLocalAhsDevice attribute), 71
task (BraketLocalQubitDevice attribute), 90
terms() (AAMS method), 27
terms() (CPhaseShift00 method), 114
terms() (CPhaseShift01 method), 125
terms() (CPhaseShift10 method), 136
terms() (GPi method), 148
terms() (GPi2 method), 159
terms() (MS method), 171
terms() (PSWAP method), 182

U
use_grouping (BraketAwsQubitDevice attribute), 52

V
validate_subspace() (AAMS static method), 27
validate_subspace() (CPhaseShift00 static method),

115
validate_subspace() (CPhaseShift01 static method),

126
validate_subspace() (CPhaseShift10 static method),

137
validate_subspace() (GPi static method), 148
validate_subspace() (GPi2 static method), 160
validate_subspace() (MS static method), 171
validate_subspace() (PSWAP static method), 183
var() (BraketAwsAhsDevice method), 46
var() (BraketAwsQubitDevice method), 66
var() (BraketLocalAhsDevice method), 85
var() (BraketLocalQubitDevice method), 104
version (BraketAwsAhsDevice attribute), 32
version (BraketAwsQubitDevice attribute), 53
version (BraketLocalAhsDevice attribute), 71
version (BraketLocalQubitDevice attribute), 90

vn_entropy() (BraketAwsAhsDevice method), 47
vn_entropy() (BraketAwsQubitDevice method), 66
vn_entropy() (BraketLocalAhsDevice method), 86
vn_entropy() (BraketLocalQubitDevice method), 104

W
wire_map (BraketAwsAhsDevice attribute), 32
wire_map (BraketAwsQubitDevice attribute), 53
wire_map (BraketLocalAhsDevice attribute), 71
wire_map (BraketLocalQubitDevice attribute), 90
wires (AAMS attribute), 20
wires (BraketAwsAhsDevice attribute), 32
wires (BraketAwsQubitDevice attribute), 53
wires (BraketLocalAhsDevice attribute), 71
wires (BraketLocalQubitDevice attribute), 90
wires (CPhaseShift00 attribute), 107
wires (CPhaseShift01 attribute), 118
wires (CPhaseShift10 attribute), 129
wires (GPi attribute), 141
wires (GPi2 attribute), 152
wires (MS attribute), 164
wires (PSWAP attribute), 175

194 Index

	Devices
	Tutorials
	Installation
	Tests
	Unit tests
	Integration tests

	Documentation

	Support
	The remote Braket device
	Usage
	Enabling the parallel execution of multiple circuits
	Device options
	Supported operations
	Pulse Programming
	Gradient computation on Braket with a QAOA Hamiltonian

	The local Braket device
	Usage
	Device options
	Supported operations

	The local AHS device
	Usage
	Creating a register
	Creating a drive
	Executing an AHS program

	The remote AHS device
	Usage
	Creating a register
	Creating a global drive
	Creating and executing the circuit

	Device options
	Supported operations

	pennylane-braket
	Classes
	AAMS
	BraketAwsAhsDevice
	BraketAwsQubitDevice
	BraketLocalAhsDevice
	BraketLocalQubitDevice
	CPhaseShift00
	CPhaseShift01
	CPhaseShift10
	GPi
	GPi2
	MS
	PSWAP

	Class Inheritance Diagram

	Python Module Index
	Index

