braket.pennylane_plugin.XY¶
-
class
XY
(phi, wires)[source]¶ Bases:
pennylane.operation.Operation
Parameterized ISWAP gate: https://arxiv.org/abs/1912.04424v1
\[\begin{split}\mathtt{XY}(\phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\phi / 2) & i \sin(\phi / 2) & 0 \\ 0 & i \sin(\phi / 2) & \cos(\phi / 2) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.\end{split}\]Details:
Number of wires: 2
Number of parameters: 1
Gradient recipe:
\[\frac{d}{d \phi} \mathtt{XY}(\phi) = \frac{1}{2} \left[ \mathtt{XY}(\phi + \pi / 2) + \mathtt{XY}(\phi - \pi / 2) \right]\]- Parameters
phi (float) – the phase angle
wires (int) – the subsystem the gate acts on
Attributes
Get base name of the operator.
should we perform a domain check for the parameters?
Eigenvalues of an instantiated operator.
Generator of the operation.
Gradient recipe for the parameter-shift method.
Boolean determining if the inverse of the operation was requested.
Matrix representation of an instantiated operator in the computational basis.
Get and set the name of the operator.
Current parameter values.
Wires of this operator.
-
base_name
¶ Get base name of the operator.
-
do_check_domain
= True¶ should we perform a domain check for the parameters?
- Type
bool
- Type
flag
-
eigvals
¶
-
generator
¶ Generator of the operation.
A length-2 list
[generator, scaling_factor]
, wheregenerator
is an existing PennyLane operation class or \(2\times 2\) Hermitian array that acts as the generator of the current operationscaling_factor
represents a scaling factor applied to the generator operation
For example, if \(U(\theta)=e^{i0.7\theta \sigma_x}\), then \(\sigma_x\), with scaling factor \(s\), is the generator of operator \(U(\theta)\):
generator = [PauliX, 0.7]
Default is
[None, 1]
, indicating the operation has no generator.
-
grad_method
= 'A'¶
-
grad_recipe
= None¶ Gradient recipe for the parameter-shift method.
This is a tuple with one nested list per operation parameter. For parameter \(\phi_k\), the nested list contains elements of the form \([c_i, a_i, s_i]\) where \(i\) is the index of the term, resulting in a gradient recipe of
\[\frac{\partial}{\partial\phi_k}f = \sum_{i} c_i f(a_i \phi_k + s_i).\]If
None
, the default gradient recipe containing the two terms \([c_0, a_0, s_0]=[1/2, 1, \pi/2]\) and \([c_1, a_1, s_1]=[-1/2, 1, -\pi/2]\) is assumed for every parameter.- Type
tuple(Union(list[list[float]], None)) or None
-
inverse
¶ Boolean determining if the inverse of the operation was requested.
-
matrix
¶
-
name
¶ Get and set the name of the operator.
-
num_params
= 1¶
-
num_wires
= 2¶
-
par_domain
= 'R'¶
-
parameters
¶ Current parameter values.
Fixed parameters are returned as is, free parameters represented by
Variable
instances are replaced by their current numerical value.- Returns
parameter values
- Return type
list[Any]
-
string_for_inverse
= '.inv'¶
-
wires
¶ Wires of this operator.
- Returns
wires
- Return type
Wires
Methods
check_domain
(p[, flattened])Check the validity of a parameter.
decomposition
(phi, wires)Returns a template decomposing the operation into other quantum operations.
get_parameter_shift
(idx[, shift])Multiplier and shift for the given parameter, based on its gradient recipe.
inv
()Inverts the operation, such that the inverse will be used for the computations by the specific device.
queue
()Append the operator to the Operator queue.
-
check_domain
(p, flattened=False)¶ Check the validity of a parameter.
Variable
instances can represent any real scalars (but not arrays).- Parameters
p (Number, array, Variable) – parameter to check
flattened (bool) – True means p is an element of a flattened parameter sequence (affects the handling of ‘A’ parameters)
- Raises
TypeError – parameter is not an element of the expected domain
ValueError – parameter is an element of an unknown domain
- Returns
p
- Return type
Number, array, Variable
-
static
decomposition
(phi, wires)[source]¶ Returns a template decomposing the operation into other quantum operations.
-
get_parameter_shift
(idx, shift=1.5707963267948966)¶ Multiplier and shift for the given parameter, based on its gradient recipe.
- Parameters
idx (int) – parameter index
- Returns
multiplier, shift
- Return type
float, float
-
inv
()¶ Inverts the operation, such that the inverse will be used for the computations by the specific device.
This method concatenates a string to the name of the operation, to indicate that the inverse will be used for computations.
Any subsequent call of this method will toggle between the original operation and the inverse of the operation.
- Returns
operation to be inverted
- Return type
Operator
-
queue
()¶ Append the operator to the Operator queue.
Contents
Usage
API
Downloads